Chen Susu, Augustine George J, Chadderton Paul
Department of Bioengineering, Imperial College London, , United Kingdom.
Graduate School for Integrative Sciences and Engineering, National University of Singapore, , Singapore.
Elife. 2016 Jan 19;5:e10509. doi: 10.7554/eLife.10509.
Active whisking is an important model sensorimotor behavior, but the function of the cerebellum in the rodent whisker system is unknown. We have made patch clamp recordings from Purkinje cells in vivo to identify whether cerebellar output encodes kinematic features of whisking including the phase and set point. We show that Purkinje cell spiking activity changes strongly during whisking bouts. On average, the changes in simple spike rate coincide with or slightly precede movement, indicating that the synaptic drive responsible for these changes is predominantly of efferent (motor) rather than re-afferent (sensory) origin. Remarkably, on-going changes in simple spike rate provide an accurate linear read-out of whisker set point. Thus, despite receiving several hundred thousand discrete synaptic inputs across a non-linear dendritic tree, Purkinje cells integrate parallel fiber input to generate precise information about whisking kinematics through linear changes in firing rate.
主动触须运动是一种重要的模型感觉运动行为,但小脑在啮齿动物触须系统中的功能尚不清楚。我们在体内对浦肯野细胞进行了膜片钳记录,以确定小脑输出是否编码触须运动的运动学特征,包括相位和设定点。我们发现,在触须运动期间,浦肯野细胞的放电活动会发生强烈变化。平均而言,简单放电频率的变化与运动同时发生或略早于运动,这表明导致这些变化的突触驱动主要来自传出(运动)而非再传入(感觉)。值得注意的是,简单放电频率的持续变化提供了触须设定点的精确线性读数。因此,尽管浦肯野细胞在非线性树突上接收数十万个离散的突触输入,但它们通过整合平行纤维输入,通过放电频率的线性变化来生成关于触须运动学的精确信息。