TidalSense Limited, 15a Vinery Rd, Cambridge, CB1 3DN, UK.
Portsmouth Hospitals University NHS Trust, Portsmouth, UK.
Respir Res. 2023 Jun 2;24(1):150. doi: 10.1186/s12931-023-02460-z.
Although currently most widely used in mechanical ventilation and cardiopulmonary resuscitation, features of the carbon dioxide (CO) waveform produced through capnometry have been shown to correlate with V/Q mismatch, dead space volume, type of breathing pattern, and small airway obstruction. This study applied feature engineering and machine learning techniques to capnography data collected by the N-Tidal™ device across four clinical studies to build a classifier that could distinguish CO recordings (capnograms) of patients with COPD from those without COPD.
Capnography data from four longitudinal observational studies (CBRS, GBRS, CBRS2 and ABRS) was analysed from 295 patients, generating a total of 88,186 capnograms. CO sensor data was processed using TidalSense's regulated cloud platform, performing real-time geometric analysis on CO waveforms to generate 82 physiologic features per capnogram. These features were used to train machine learning classifiers to discriminate COPD from 'non-COPD' (a group that included healthy participants and those with other cardiorespiratory conditions); model performance was validated on independent test sets.
The best machine learning model (XGBoost) performance provided a class-balanced AUROC of 0.985 ± 0.013, positive predictive value (PPV) of 0.914 ± 0.039 and sensitivity of 0.915 ± 0.066 for a diagnosis of COPD. The waveform features that are most important for driving classification are related to the alpha angle and expiratory plateau regions. These features correlated with spirometry readings, supporting their proposed properties as markers of COPD.
The N-Tidal™ device can be used to accurately diagnose COPD in near-real-time, lending support to future use in a clinical setting.
Please see NCT03615365, NCT02814253, NCT04504838 and NCT03356288.
尽管目前在机械通气和心肺复苏中应用最为广泛,但呼气末二氧化碳(CO)波形的特征已被证明与通气/血流比例失调、死腔量、呼吸模式类型和小气道阻塞相关。本研究应用特征工程和机器学习技术,对 N-Tidal™设备在四项临床研究中收集的呼气末二氧化碳数据进行分析,构建一个能够区分 COPD 患者和非 COPD 患者 CO 记录(呼气末二氧化碳描记图)的分类器。
对来自四项纵向观察性研究(CBRS、GBRS、CBRS2 和 ABRS)的 295 名患者的呼气末二氧化碳数据进行分析,共生成 88186 份呼气末二氧化碳描记图。CO 传感器数据由 TidalSense 的受监管云平台进行处理,对 CO 波形进行实时几何分析,为每张呼气末二氧化碳描记图生成 82 个生理特征。这些特征用于训练机器学习分类器,以区分 COPD 和“非 COPD”(包括健康参与者和其他心肺疾病患者);在独立测试集中验证模型性能。
最佳机器学习模型(XGBoost)的性能在平衡的 AUROC 为 0.985±0.013,阳性预测值(PPV)为 0.914±0.039,敏感性为 0.915±0.066,用于诊断 COPD。对分类最有影响的波形特征与 alpha 角和呼气平台区域有关。这些特征与肺功能读数相关,支持其作为 COPD 标志物的特性。
N-Tidal™设备可用于实时准确诊断 COPD,为未来在临床环境中的应用提供支持。
请参见 NCT03615365、NCT02814253、NCT04504838 和 NCT03356288。