St. John's School, 2401 Claremont Lane, Houston, Texas 77019, United States.
Faculty of Chemistry and Chemical Technology, University of Ljubljana , Vecna pot 113, 1000 Ljubljana, Slovenia.
ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3551-6. doi: 10.1021/acsami.5b11131. Epub 2016 Jan 29.
A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.
制备了一种石墨烯纳米带(GNR)堆叠和环氧树脂的导电复合材料。环氧树脂中填充了 GNR 堆叠,作为导电添加剂。GNR 堆叠的平均厚度为 30nm,宽度为 250nm,长度为 30μm。在 5wt%GNR 含量下,GNR 填充环氧树脂复合材料的电导率>100S/m。这使得 GNR-环氧树脂复合材料可以通过复合材料两端的电压产生的焦耳(电压诱导)加热来除冰。在-20°C 的环境下,将 0.5W/cm(2)的功率密度施加到一个静态直升机旋翼叶片表面,以去除 1cm 厚(14g)的冰。