Suppr超能文献

在药物性麻痹期间,利用脑电图自动确定肌电图污染成分并验证独立成分分析

Automatic determination of EMG-contaminated components and validation of independent component analysis using EEG during pharmacologic paralysis.

作者信息

Fitzgibbon S P, DeLosAngeles D, Lewis T W, Powers D M W, Grummett T S, Whitham E M, Ward L M, Willoughby J O, Pope K J

机构信息

School of Medicine, Flinders University, Adelaide, Australia; Oxford Centre for FMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.

School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia.

出版信息

Clin Neurophysiol. 2016 Mar;127(3):1781-93. doi: 10.1016/j.clinph.2015.12.009. Epub 2015 Dec 18.

Abstract

OBJECTIVE

Validate independent component analysis (ICA) for removal of EMG contamination from EEG, and demonstrate a heuristic, based on the gradient of EEG spectra (slope of graph of log EEG power vs log frequency, 7-70 Hz) from paralysed awake humans, to automatically identify and remove components that are predominantly EMG.

METHODS

We studied the gradient of EMG-free EEG spectra to quantitatively inform the choice of threshold. Then, pre-existing EEG from 3 disparate experimental groups was examined before and after applying the heuristic to validate that the heuristic preserved neurogenic activity (Berger effect, auditory odd ball, visual and auditory steady state responses).

RESULTS

(1) ICA-based EMG removal diminished EMG contamination up to approximately 50 Hz, (2) residual EMG contamination using automatic selection was similar to manual selection, and (3) task-induced cortical activity remained, was enhanced, or was revealed using the ICA-based methodology.

CONCLUSION

This study further validates ICA as a powerful technique for separating and removing myogenic signals from EEG. Automatic processing based on spectral gradients to exclude EMG-containing components is a conceptually simple and valid technique.

SIGNIFICANCE

This study strengthens ICA as a technique to remove EMG contamination from EEG whilst preserving neurogenic activity to 50 Hz.

摘要

目的

验证独立成分分析(ICA)用于去除脑电图(EEG)中肌电图(EMG)干扰的效果,并基于瘫痪清醒人类的EEG频谱梯度(对数EEG功率与对数频率的关系图斜率,7 - 70 Hz),展示一种启发式方法,以自动识别并去除主要为EMG的成分。

方法

我们研究了无EMG的EEG频谱梯度,以定量指导阈值的选择。然后,在应用该启发式方法前后,对来自3个不同实验组的已有EEG进行检查,以验证该启发式方法能保留神经源性活动(贝格尔效应、听觉奇球效应、视觉和听觉稳态反应)。

结果

(1)基于ICA的EMG去除可将EMG干扰降低至约50 Hz,(2)使用自动选择的残余EMG干扰与手动选择相似,(3)使用基于ICA的方法,任务诱发的皮层活动得以保留、增强或显现。

结论

本研究进一步验证了ICA作为从EEG中分离和去除肌源性信号的强大技术。基于频谱梯度自动排除含EMG成分的处理是一种概念简单且有效的技术。

意义

本研究强化了ICA作为一种从EEG中去除EMG干扰同时保留高达50 Hz神经源性活动的技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验