Suppr超能文献

基质的维度和硬度共同调节间充质基质细胞的成骨作用。

Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells.

机构信息

Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.

Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan.

出版信息

Acta Biomater. 2016 Mar 1;32:210-222. doi: 10.1016/j.actbio.2016.01.010. Epub 2016 Jan 11.

Abstract

UNLABELLED

Osteogenic potential of mesenchymal stromal cells (MSCs) is mechanosensitive. It's affected by the mechanical properties of the cellular microenvironment, particularly its mechanical modulus. To explore the effect of mechanical modulus on osteogenesis in the third dimension (3D), this study used a novel polyacrylamide (PA) scaffold whose pores are monodisperse and spherical, the mechanical moduli of which can be tuned across a wide range. It was found that MSCs have similar proliferation rates in PA scaffolds independent of the matrix stiffness. The contractile force exerted by MSCs inside PA scaffolds was strong enough to deform the pores of scaffolds made of more compliant PAs (whose shear modulus, G'scaffold<4 kPa). Only scaffolds of the highest stiffness (G'scaffold=12 kPa) can withhold the contraction from MSCs. After osteogenic induction for 21 days, the expression profiles of marker genes showed that PA scaffolds of G'scaffold=12 kPa promoted osteogenesis of MSCs. Confocal image analysis demonstrated that there are more F-actin cytoskeletons and bundled stress fibers at higher matrix moduli in 2D and 3D. Moreover, the 3D porous structure promotes osteogenesis of MSCs more than 2D flat substrates. Together, the differences of cellular behaviors when cultured in 2D and 3D systems are evident. The PA scaffolds developed in the present study can be used for further investigation into the mechanism of MSC mechanosensing in the 3D context.

STATEMENT OF SIGNIFICANCE

Mechanical properties of the microenvironment affect cellular behaviors, such as matrix stiffness. Traditionally, cell biological investigations have mostly employed cells growing on 2D substrates. The 3D porous PA scaffolds with the same topological conformation and pore sizes but different stiffness generated in this study showed that the differences of cellular behaviors in 2D and 3D systems are evident. Our 3D scaffolds provide insights into tissue engineering when stem cells incorporated with 3D scaffolds and support the future studies of cellular mechanobiology as well as the elucidation the role mechanical factor plays on the physiology and fate determination of MSCs in the 3D context.

摘要

未加标签

间充质基质细胞(MSCs)的成骨潜能具有力学敏感性。它受细胞微环境机械特性的影响,特别是其机械模量。为了探索机械模量对三维(3D)成骨的影响,本研究使用了一种新型的聚丙烯酰胺(PA)支架,其孔呈单分散球形,机械模量可在很宽的范围内调节。研究发现,MSCs 在 PA 支架中的增殖率相似,与基质硬度无关。MSCs 在 PA 支架内产生的收缩力足以使较软的 PA 制成的支架的孔变形(其剪切模量 G支架<4kPa)。只有最高刚度(G支架=12kPa)的支架才能承受 MSCs 的收缩。成骨诱导 21 天后,标记基因的表达谱表明,G支架=12kPa 的 PA 支架促进了 MSCs 的成骨。共聚焦图像分析表明,在较高基质模量的 2D 和 3D 中,存在更多的 F-肌动蛋白细胞骨架和束状应力纤维。此外,3D 多孔结构比 2D 平板基质更能促进 MSCs 的成骨。总之,在 2D 和 3D 系统中培养时细胞行为的差异是明显的。本研究中开发的 PA 支架可用于进一步研究 MSC 在 3D 环境中机械感应的机制。

意义声明

微环境的机械性能影响细胞行为,如基质硬度。传统上,细胞生物学研究主要采用在 2D 基质上生长的细胞。本研究中制备的具有相同拓扑构象和孔径但不同刚度的 3D 多孔 PA 支架表明,2D 和 3D 系统中细胞行为的差异是明显的。我们的 3D 支架为干细胞与 3D 支架结合的组织工程提供了深入的了解,并支持未来细胞生物力学以及机械因素在 3D 环境中对 MSCs 生理学和命运决定的作用的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验