Schätzle Philipp, Kapitein Lukas C, Hoogenraad Casper C
Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Methods Cell Biol. 2016;131:107-26. doi: 10.1016/bs.mcb.2015.06.006. Epub 2015 Sep 3.
The microtubule (MT) cytoskeleton plays an active role during different phases of neuronal development and is an essential structure for stable neuronal morphology. MTs determine axon formation, control polarized cargo trafficking, and regulate the dynamics of dendritic spines, the major sites of excitatory synaptic input. Defects in MT function have been linked to various neurological and neurodegenerative diseases and recent studies highlight neuronal MTs as a potential target for therapeutic intervention. Thus, understanding MT dynamics and its regulation is of central importance to study many aspects of neuronal function. The dynamics of MT in neurons can be studied by visualizing fluorescently tagged MT plus-end tracking proteins (+TIPs). Tracking of +TIP trajectories allows analyzing the speeds and directionality of MT growth in axons and dendrites. Numerous labs now use +TIP to track growing MTs in dissociated neuron cultures. This chapter provides detailed methods for live imaging of MT dynamics in organotypic hippocampal slice cultures. We describe protocols for culturing and transducing organotypic slices and imaging MT dynamics by spinning disk confocal microscopy.
微管(MT)细胞骨架在神经元发育的不同阶段发挥着积极作用,是稳定神经元形态的重要结构。微管决定轴突形成,控制极化货物运输,并调节树突棘(兴奋性突触输入的主要部位)的动态变化。微管功能缺陷与多种神经和神经退行性疾病有关,最近的研究强调神经元微管是治疗干预的潜在靶点。因此,了解微管动力学及其调节对于研究神经元功能的许多方面至关重要。通过可视化荧光标记的微管正端追踪蛋白(+TIPs)可以研究神经元中微管的动力学。追踪+TIP轨迹可以分析轴突和树突中微管生长的速度和方向性。现在许多实验室使用+TIP来追踪解离神经元培养物中生长的微管。本章提供了在器官型海马切片培养物中对微管动力学进行实时成像的详细方法。我们描述了培养和转导器官型切片以及通过旋转盘共聚焦显微镜对微管动力学进行成像的方案。