Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands.
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands.
Curr Biol. 2020 Mar 9;30(5):899-908.e6. doi: 10.1016/j.cub.2019.12.056. Epub 2020 Feb 20.
Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.
神经元树突的特征是反平行的微管组织。混合定向的微管促进树突的发育并促进极化货物运输;然而,调节树突微管组织的机制仍不清楚。在这里,我们发现驱动蛋白-14 马达 KIFC3 对于组织树突微管和控制树突发育很重要。驱动蛋白-14 马达蛋白(果蝇 Ncd、酿酒酵母 Kar3、酿酒酵母 Pkl1 和非洲爪蟾 XCTK2)的特征是 C 端的马达结构域,并且在有丝分裂中使用 N 端的另一个微管结合位点很好地描述了纺锤体微管的组织[1-4]。在哺乳动物中,有三种驱动蛋白-14 成员,KIFC1、KIFC2 和 KIFC3。最近的研究表明,KIFC1 对于神经元中轴突微管的组织很重要,这一过程依赖于两个微管相互作用结构域[5]。与 KIFC1 不同,KIFC2 和 KIFC3 缺乏 N 端微管结合结构域,只有一个微管相互作用结构域,即马达结构域[6,7]。因此,为了调节微管-微管交联或滑动,KIFC2 和 KIFC3 需要与额外的微管结合蛋白相互作用以连接两个微管。我们发现 KIFC3 具有树突特异性分布,并与微管负端结合蛋白 CAMSAP2 相互作用。KIFC3 或 CAMSAP2 的耗竭导致树突发育过程中微管动力学增加。我们提出了一个模型,其中 CAMSAP2 将 KIFC3 锚定在微管的负端,并使微管阵列在树突中固定。