Suppr超能文献

创建用于预测急性A型主动脉夹层手术患者院内死亡的计分卡。

Creation of a Scorecard to Predict In-Hospital Death in Patients Undergoing Operations for Acute Type A Aortic Dissection.

作者信息

Leontyev Sergey, Légaré Jean-Francois, Borger Michael A, Buth Karen J, Funkat Anne K, Gerhard Jochann, Mohr Friedrich W

机构信息

Department of Cardiac Surgery, Heart Center, University of Leipzig, Leipzig, Germany.

Division of Cardiac Surgery, Department of Surgery, Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada.

出版信息

Ann Thorac Surg. 2016 May;101(5):1700-6. doi: 10.1016/j.athoracsur.2015.10.038. Epub 2016 Jan 12.

Abstract

BACKGROUND

This study evaluated preoperative predictors of in-hospital death for the surgical treatment of patients with acute type A aortic dissection (Type A) and created an easy-to-use scorecard to predict in-hospital death.

METHODS

We reviewed retrospectively all consecutive patients who underwent operations for acute Type A between 1996 and 2011 at 2 tertiary care institutions. A logistic regression model was created to identify independent preoperative predictors of in-hospital death. The results were used to create a scorecard predicting operative risk.

RESULTS

Emergency operations were performed in 534 consecutive patients for acute Type A. Mean age was 61 ± 14 years and 36.3% were women. Critical preoperative state was present in 31% of patients and malperfusion of one or more end organs in 36%. Unadjusted in-hospital mortality was 18.7% and not significantly different between institutions. Independent predictors of in-hospital death were age 50 to 70 years (odds ratio [OR], 3.8; p = 0.001), age older than 70 years (OR, 2.8; p = 0.03), critical preoperative state (OR, 3.2; p < 0.001), visceral malperfusion (OR, 3.0; p = 0.003), and coronary artery disease (OR, 2.2; p = 0.006). Age younger than 50 years (OR, 0.3; p = 0.01) was protective for early survival. Using this information, we created an easily usable mortality risk score based on these variables. The patients were stratified into four risk categories predicting in-hospital death: less than 10%, 10% to 25%, 25% to 50%, and more than 50%.

CONCLUSIONS

This represents one of the largest series of patients with Type A in which a risk model was created. Using our approach, we have shown that age, critical preoperative state, and malperfusion syndrome were strong independent risk factors for early death and could be used for the preoperative risk assessment.

摘要

背景

本研究评估了急性A型主动脉夹层(A型)患者手术治疗的院内死亡术前预测因素,并创建了一个易于使用的计分卡来预测院内死亡。

方法

我们回顾性分析了1996年至2011年期间在两家三级医疗机构接受急性A型手术的所有连续患者。建立逻辑回归模型以确定院内死亡的独立术前预测因素。结果用于创建预测手术风险的计分卡。

结果

534例连续患者接受了急性A型急诊手术。平均年龄为61±14岁,女性占36.3%。31%的患者术前状态危急,36%的患者存在一个或多个终末器官灌注不良。未经调整的院内死亡率为18.7%,各机构之间无显著差异。院内死亡的独立预测因素为年龄50至70岁(比值比[OR],3.8;p = 0.001)、年龄大于70岁(OR,2.8;p = 0.03)、术前状态危急(OR,3.2;p < 0.001)、内脏灌注不良(OR,3.0;p = 0.003)和冠状动脉疾病(OR,2.2;p = 0.006)。年龄小于50岁(OR,0.3;p = 0.01)对早期生存具有保护作用。利用这些信息,我们基于这些变量创建了一个易于使用的死亡风险评分。患者被分为四个预测院内死亡的风险类别:低于10%、10%至25%、25%至50%和高于50%。

结论

这是创建风险模型的最大系列A型患者研究之一。采用我们的方法,我们已表明年龄、术前危急状态和灌注不良综合征是早期死亡的强有力独立危险因素,可用于术前风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验