文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的急性 A 型主动脉夹层手术治疗后不良结局的预测模型。

A predictive model for postoperative adverse outcomes following surgical treatment of acute type A aortic dissection based on machine learning.

机构信息

Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.

Key Laboratory of Cardio-Thoracic Surgery, Fujian Province University, Fuzhou, Fujian, P.R. China.

出版信息

J Clin Hypertens (Greenwich). 2024 Mar;26(3):251-261. doi: 10.1111/jch.14774. Epub 2024 Feb 11.


DOI:10.1111/jch.14774
PMID:38341621
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10918704/
Abstract

Acute type A aortic dissection (AAAD) has a high probability of postoperative adverse outcomes (PAO) after emergency surgery, so exploring the risk factors for PAO during hospitalization is key to reducing postoperative mortality and improving prognosis. An artificial intelligence approach was used to build a predictive model of PAO by clinical data-driven machine learning to predict the incidence of PAO after total arch repair for AAAD. This study included 380 patients with AAAD. The clinical features that are associated with PAO were selected using the LASSO regression analysis. Six different machine learning algorithms were tried for modeling, and the performance of each model was analyzed comprehensively using receiver operating characteristic curves, calibration curve, precision recall curve, and decision analysis curves. Explain the optimal model through Shapley Additive Explanation (SHAP) and perform an individualized risk assessment. After comprehensive analysis, the authors believe that the extreme gradient boosting (XGBoost) model is the optimal model, with better performance than other models. The authors successfully built a prediction model for PAO in AAAD patients based on the XGBoost algorithm and interpreted the model with the SHAP method, which helps to identify high-risk AAAD patients at an early stage and to adjust individual patient-related clinical treatment plans in a timely manner.

摘要

急性 A 型主动脉夹层(AAAD)在急诊手术后发生术后不良预后(PAO)的可能性较高,因此,探讨住院期间 PAO 的危险因素是降低术后死亡率和改善预后的关键。本研究采用人工智能方法,通过临床数据驱动的机器学习,构建了一个预测 AAAD 全弓置换术后 PAO 的预测模型。本研究纳入了 380 例 AAAD 患者。采用 LASSO 回归分析筛选与 PAO 相关的临床特征。尝试了 6 种不同的机器学习算法进行建模,并通过接收者操作特征曲线、校准曲线、精度召回曲线和决策分析曲线对每个模型的性能进行了全面分析。通过 Shapley Additive Explanation(SHAP)解释最优模型,并进行个体化风险评估。综合分析后,作者认为极端梯度提升(XGBoost)模型是最优模型,其性能优于其他模型。作者成功地基于 XGBoost 算法建立了 AAAD 患者 PAO 的预测模型,并通过 SHAP 方法对模型进行了解释,这有助于早期识别高危 AAAD 患者,并及时调整个体患者相关的临床治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/42a1ae47ede3/JCH-26-251-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/a44da55f0743/JCH-26-251-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/90586639f39e/JCH-26-251-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/769f583722d7/JCH-26-251-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/4edf5cf79dce/JCH-26-251-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/42a1ae47ede3/JCH-26-251-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/a44da55f0743/JCH-26-251-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/90586639f39e/JCH-26-251-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/769f583722d7/JCH-26-251-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/4edf5cf79dce/JCH-26-251-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1056/10918704/42a1ae47ede3/JCH-26-251-g003.jpg

相似文献

[1]
A predictive model for postoperative adverse outcomes following surgical treatment of acute type A aortic dissection based on machine learning.

J Clin Hypertens (Greenwich). 2024-3

[2]
Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.

Ann Med. 2023

[3]
Development of a machine learning-based model to predict major adverse events after surgery for type A aortic dissection complicated by malnutrition.

Front Nutr. 2024-7-4

[4]
Prediction of the development of acute kidney injury following cardiac surgery by machine learning.

Crit Care. 2020-7-31

[5]
Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation.

Front Endocrinol (Lausanne). 2024

[6]
A Predictive Model for Prolonged Mechanical Ventilation After Triple-Branched Stent Graft for Acute Type A Aortic Dissection.

J Surg Res. 2024-4

[7]
Machine Learning Models for Predicting In-Hospital Mortality in Acute Aortic Dissection Patients.

Front Cardiovasc Med. 2021-9-17

[8]
Using machine learning to identify patients at high risk of developing low bone density or osteoporosis after gastrectomy: a 10-year multicenter retrospective analysis.

J Cancer Res Clin Oncol. 2023-12

[9]
Prediction of preoperative in-hospital mortality rate in patients with acute aortic dissection by machine learning: a two-centre, retrospective cohort study.

BMJ Open. 2023-4-3

[10]
Prediction model of obstructive sleep apnea-related hypertension: Machine learning-based development and interpretation study.

Front Cardiovasc Med. 2022-12-5

引用本文的文献

[1]
Preoperative prediction of major adverse outcomes after total arch replacement in acute type A aortic dissection based on machine learning ensemble.

Sci Rep. 2025-7-1

[2]
Interpretable prognostic modeling for long-term survival of Type A aortic dissection patients using support vector machine algorithm.

Eur J Med Res. 2025-4-15

[3]
Predicting the risk of heart failure after acute myocardial infarction using an interpretable machine learning model.

Front Cardiovasc Med. 2025-1-24

[4]
Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years.

Diagnostics (Basel). 2024-5-26

本文引用的文献

[1]
Blood Pressure, Hypertension, and the Risk of Aortic Dissection Incidence and Mortality: Results From the J-SCH Study, the UK Biobank Study, and a Meta-Analysis of Cohort Studies.

Circulation. 2022-3

[2]
Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model.

PLoS One. 2021

[3]
Long-term outcomes of treatment with different stent grafts in acute DeBakey type I aortic dissection.

J Card Surg. 2020-11

[4]
A Machine Learning-Based Prediction of Hospital Mortality in Patients With Postoperative Sepsis.

Front Med (Lausanne). 2020-8-11

[5]
A nomogram for predicting in-hospital mortality in acute type A aortic dissection patients.

J Thorac Dis. 2020-3

[6]
The elevated admission white blood cell count relates to adverse surgical outcome of acute Stanford type a aortic dissection.

J Cardiothorac Surg. 2020-3-14

[7]
Machine Learning in Medicine.

N Engl J Med. 2019-6-27

[8]
In-hospital major adverse outcomes of acute Type A aortic dissection.

Eur J Cardiothorac Surg. 2019-2-1

[9]
Therapies for Thoracic Aortic Aneurysms and Acute Aortic Dissections.

Arterioscler Thromb Vasc Biol. 2019-2

[10]
Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost.

Physiol Meas. 2018-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索