Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.
ACS Nano. 2016 Feb 23;10(2):2960-74. doi: 10.1021/acsnano.6b00258. Epub 2016 Jan 26.
While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure-property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.
虽然在微调纵横比从而调整金纳米棒的等离子体共振方面已经取得了巨大的成功,但在高度弯曲的纳米棒表面上实现原子级精度的晶面控制一直是一个更具挑战性的任务。纳米棒表面的固有结构复杂性和缺乏精确的晶面控制仍然是原子级阐明支撑金纳米棒迷人催化性能的结构-性能关系的主要障碍。在这里,我们证明可以使用亚铜离子和十六烷基三甲基溴化铵作为一对独特的表面封端竞争物,精确地调整单晶金纳米棒的晶面,以在纳米棒外延生长过程中引导颗粒几何形状的演变。通过巧妙地操纵亚铜离子和十六烷基三甲基溴化铵之间的竞争,我们能够以高度可控和选择性的方式创建一整套由纳米棒衍生的各向异性多面体形貌,其表面由特定类型的明确定义的高指数和低指数晶面封闭。这种晶面控制的纳米棒外延生长方法还允许我们在精细调整颗粒纵横比的同时,很好地保留各向异性金纳米棒的所有特征晶面和几何特征。充分利用组合的结构和等离子体可调性,我们还使用表面增强拉曼光谱作为具有独特时间分辨和分子指纹识别能力的超灵敏光谱工具,进一步研究了在具有良好晶面的金纳米棒上的晶面依赖性异相催化。