Suppr超能文献

自动化金纳米棒光谱形态分析流程

Automated Gold Nanorod Spectral Morphology Analysis Pipeline.

作者信息

Gleason Samuel P, Dahl Jakob C, Elzouka Mahmoud, Wang Xingzhi, Byrne Dana O, Cho Hannah, Gababa Mumtaz, Prasher Ravi S, Lubner Sean, Chan Emory M, Alivisatos A Paul

机构信息

Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

ACS Nano. 2024 Dec 24;18(51):34646-34655. doi: 10.1021/acsnano.4c09753. Epub 2024 Dec 13.

Abstract

The development of a colloidal synthesis procedure to produce nanomaterials with high shape and size purity is often a time-consuming, iterative process. This is often due to quantitative uncertainties in the required reaction conditions and the time, resources, and expertise intensive characterization methods required for quantitative determination of nanomaterial size and shape. Absorption spectroscopy is often the easiest method for colloidal nanomaterial characterization. However, due to the lack of a reliable method to extract nanoparticle shapes from absorption spectroscopy, it is generally treated as a more qualitative measure for metal nanoparticles. This work demonstrates a gold nanorod (AuNR) spectral morphology analysis tool, called AuNR-SMA, which is a fast and accurate method to extract quantitative structural information from colloidal AuNR absorption spectra. To demonstrate the practical utility of this model, we apply it to three distinct applications. First, we demonstrate this model's utility as an automated analysis tool in a high-throughput AuNR synthesis procedure by generating quantitative size information from optical spectra. Second, we use the predictions generated by this model to train a machine learning model to predict the resulting AuNR size distributions under specified reaction conditions. Third, we apply this model to spectra extracted from the literature where no size distributions are reported and impute unreported quantitative information on AuNR synthesis. This approach can potentially be extended to any other nanocrystal system where absorption spectra are size dependent, and accurate numerical simulation of absorption spectra is possible. In addition, this pipeline could be integrated into automated synthesis apparatuses to provide interpretable data from simple measurements, help explore the synthesis science of nanoparticles in a rational manner, or facilitate closed-loop workflows.

摘要

开发一种能够制备具有高形状和尺寸纯度的纳米材料的胶体合成方法通常是一个耗时的迭代过程。这通常是由于所需反应条件存在定量不确定性,以及定量测定纳米材料尺寸和形状所需的耗时、资源密集且需要专业知识的表征方法。吸收光谱法通常是表征胶体纳米材料最简单的方法。然而,由于缺乏从吸收光谱中提取纳米颗粒形状的可靠方法,它通常被视为一种对金属纳米颗粒更具定性的测量方法。这项工作展示了一种称为金纳米棒光谱形态分析工具(AuNR-SMA),它是一种从胶体金纳米棒吸收光谱中提取定量结构信息的快速且准确的方法。为了证明该模型的实际效用,我们将其应用于三个不同的应用场景。首先,我们通过从光谱中生成定量尺寸信息,展示该模型作为高通量金纳米棒合成过程中的自动分析工具的效用。其次,我们使用该模型生成的预测结果来训练一个机器学习模型,以预测在特定反应条件下所得金纳米棒的尺寸分布。第三,我们将该模型应用于从文献中提取的未报告尺寸分布的光谱,并推断关于金纳米棒合成的未报告定量信息。这种方法有可能扩展到任何其他吸收光谱与尺寸相关且能够对吸收光谱进行精确数值模拟的纳米晶体系统。此外,该流程可以集成到自动合成设备中,以从简单测量中提供可解释的数据,有助于以合理的方式探索纳米颗粒的合成科学,或促进闭环工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb8/11673583/0c6a9622e236/nn4c09753_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验