Suppr超能文献

氧化应激促进衰老软骨细胞中过氧化物酶体增殖物激活受体氧化并减弱促生存信号。

Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.

作者信息

Collins John A, Wood Scott T, Nelson Kimberly J, Rowe Meredith A, Carlson Cathy S, Chubinskaya Susan, Poole Leslie B, Furdui Cristina M, Loeser Richard F

机构信息

From the Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.

the Departments of Biochemistry and.

出版信息

J Biol Chem. 2016 Mar 25;291(13):6641-54. doi: 10.1074/jbc.M115.693523. Epub 2016 Jan 21.

Abstract

Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.

摘要

氧化应激介导的氧化还原敏感蛋白的翻译后修饰被认为是与年龄相关的细胞功能障碍和疾病进展的关键机制。过氧化物酶(PRX)是关键的细胞内抗氧化剂,也调节氧化还原信号事件。年龄相关性骨关节炎是一种常见的关节炎形式,与线粒体功能障碍和氧化应激有关。本研究的目的是确定衰老和氧化应激对软骨细胞内信号传导的影响,特别关注胞质PRX2和线粒体PRX3的氧化。用甲萘醌作为诱导细胞氧化应激的模型。与从年轻成年人分离的软骨细胞相比,老年人的软骨细胞在基础状态和氧化应激条件下表现出更高水平的PRX1 - 3过度氧化。过氧化物酶过度氧化与促生存Akt信号传导的抑制和促死亡p38信号传导的刺激有关。在培养的人软骨细胞中,通过线粒体靶向过氧化氢酶(MCAT)的腺病毒表达以及在MCAT转基因小鼠的软骨外植体中,这些变化得到了预防。在老年人的人软骨切片和骨关节炎软骨中观察到过氧化物酶过度氧化。MCAT转基因小鼠表现出较少的年龄相关性骨关节炎。这些发现表明,与年龄相关的氧化应激可破坏正常的生理信号传导并导致骨关节炎,并提示过氧化物酶过度氧化是一种潜在机制。

相似文献

1
Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes.
J Biol Chem. 2016 Mar 25;291(13):6641-54. doi: 10.1074/jbc.M115.693523. Epub 2016 Jan 21.
2
Differential peroxiredoxin hyperoxidation regulates MAP kinase signaling in human articular chondrocytes.
Free Radic Biol Med. 2019 Apr;134:139-152. doi: 10.1016/j.freeradbiomed.2019.01.005. Epub 2019 Jan 9.
3
4
Mitochondrial pathology in osteoarthritic chondrocytes.
Curr Drug Targets. 2014;15(7):710-9. doi: 10.2174/1389450115666140417120305.
5
Reactive oxygen species, aging and articular cartilage homeostasis.
Free Radic Biol Med. 2019 Feb 20;132:73-82. doi: 10.1016/j.freeradbiomed.2018.08.038. Epub 2018 Aug 31.
6
ROS/oxidative stress signaling in osteoarthritis.
Biochim Biophys Acta. 2016 Apr;1862(4):576-591. doi: 10.1016/j.bbadis.2016.01.003. Epub 2016 Jan 6.
7
Prx II reduces oxidative stress and cell senescence in chondrocytes by activating the p16-CDK4/6-pRb-E2F signaling pathway.
Eur Rev Med Pharmacol Sci. 2020 Apr;24(7):3448-3458. doi: 10.26355/eurrev_202004_20802.
8
Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis.
Connect Tissue Res. 2020 Jan;61(1):34-47. doi: 10.1080/03008207.2019.1665035. Epub 2019 Sep 15.
9
The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair.
J Bone Joint Surg Am. 2003;85-A Suppl 2:106-10. doi: 10.2106/00004623-200300002-00014.
10
Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis.
Biochem Pharmacol. 2016 May 15;108:1-10. doi: 10.1016/j.bcp.2015.12.012. Epub 2015 Dec 19.

引用本文的文献

1
The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice.
Nat Commun. 2025 Jul 1;16(1):5996. doi: 10.1038/s41467-025-60933-9.
2
Epigenetics and Herbs: Potential Therapeutic Strategies for Osteoarthritis of the Knee.
J Pain Res. 2025 Jun 26;18:3217-3261. doi: 10.2147/JPR.S517224. eCollection 2025.
3
Non-targeted metabolomic study in plasma in rats with post-traumatic osteoarthritis model.
PLoS One. 2025 Mar 12;20(3):e0315708. doi: 10.1371/journal.pone.0315708. eCollection 2025.
5
Functional Nanomaterials for the Treatment of Osteoarthritis.
Int J Nanomedicine. 2024 Jul 4;19:6731-6756. doi: 10.2147/IJN.S465243. eCollection 2024.
8
Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases.
Antioxidants (Basel). 2024 Mar 25;13(4):394. doi: 10.3390/antiox13040394.

本文引用的文献

2
A Comprehensive Histological Assessment of Osteoarthritis Lesions in Mice.
Cartilage. 2011 Oct;2(4):354-63. doi: 10.1177/1947603511402665.
4
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.
Nat Chem Biol. 2015 Jan;11(1):64-70. doi: 10.1038/nchembio.1695. Epub 2014 Nov 24.
5
The role of senescent cells in ageing.
Nature. 2014 May 22;509(7501):439-46. doi: 10.1038/nature13193.
7
Peroxiredoxins as preferential targets in H2O2-induced signaling.
Methods Enzymol. 2013;527:41-63. doi: 10.1016/B978-0-12-405882-8.00003-9.
8
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
9
Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46.
Biochem J. 2013 Aug 1;453(3):475-85. doi: 10.1042/BJ20130030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验