Suppr超能文献

在澳大利亚一家主要创伤中心优化创伤分诊算法:分诊风险评分的推导与内部验证

Refining the trauma triage algorithm at an Australian major trauma centre: derivation and internal validation of a triage risk score.

作者信息

Dinh M M, Bein K J, Oliver M, Veillard A-S, Ivers R

机构信息

Department of Trauma Services, Royal Prince Alfred Hospital, Camperdown, Australia.

Emergency Department, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.

出版信息

Eur J Trauma Emerg Surg. 2014 Feb;40(1):67-74. doi: 10.1007/s00068-013-0315-1. Epub 2013 Jul 31.

Abstract

PURPOSE

To derive and internally validate a clinical prediction rule for trauma triage.

METHODS

Ambulance presentations requiring trauma team activation between 2007 and 2011 at a single inner city major trauma centre were analysed. The primary outcome was major trauma, defined as Injury Severity Score >15, intensive care unit admission or in-hospital death. Demographic details, vital signs on arrival at hospital, mechanism of injury and injured body regions were used in the modelling process. Multivariable logistic regression was used on a randomly selected derivation sample. Receiver operating characteristic (ROC) analysis and Hosmer-Lemeshow tests were used to assess the discrimination and calibration of the derived model. The model was further tested using bootstrapping cross-validation.

RESULTS

A total of 3027 patients were identified. Predictors selected for the prediction model were age ≥65 years (OR 1.58, 95 %CI 1.08-2.32, p = 0.02), abnormal vital signs (OR 3.72, 95 %CI 2.64-5.25), Glasgow Coma Scale score ≤13 (OR 14, 95 %CI 9.23-23.34 p < 0.001), penetrating injury (OR 5.13, 95 %CI 2.76-9.54, p < 0.001), multiregion injury (OR 4.72 95 %CI 3.45-6.46, p < 0.001), falls (OR 1.51 95 %CI 1.06-2.15, p = 0.02) and motor vehicle crashes (OR 0.56, 95 %CI 0.35-0.90, p = 0.02). The ROC area under the curve (AUC) for the final model was 0.85 (95 %CI 0.83-0.87) with a Hosmer-Lemeshow test statistic p = 0.83. Bootstrapping cross-validation demonstrated an identical AUC.

CONCLUSION

We have derived and internally validated a trauma risk prediction rule using trauma registry data. This may assist with the formulation of revised local and regional trauma triage protocols. External validation is required before implementation.

摘要

目的

推导并内部验证一个用于创伤分诊的临床预测规则。

方法

对2007年至2011年期间在一个市中心主要创伤中心需要激活创伤团队的救护车出诊情况进行分析。主要结局为严重创伤,定义为损伤严重度评分>15、入住重症监护病房或院内死亡。建模过程中使用了人口统计学细节、入院时的生命体征、损伤机制和受伤身体部位。对随机选择的推导样本进行多变量逻辑回归分析。采用受试者工作特征(ROC)分析和Hosmer-Lemeshow检验来评估推导模型的区分度和校准度。使用自助法交叉验证对模型进行进一步测试。

结果

共识别出3027例患者。入选预测模型的预测因素为年龄≥65岁(比值比[OR]1.58,95%置信区间[CI]1.08 - 2.32,p = 0.02)、生命体征异常(OR 3.72,95%CI 2.64 - 5.25)、格拉斯哥昏迷量表评分≤13(OR 14,95%CI 9.23 - 23.34,p < 0.001)、穿透伤(OR 5.13,95%CI 2.76 - 9.54,p < 0.001)、多部位损伤(OR 4.72,95%CI 3.45 - 6.46,p < 0.001)、跌倒(OR 1.51,95%CI 1.06 - 2.15,p = 0.02)和机动车碰撞伤(OR 0.56,95%CI 0.35 - 0.90,p = 0.02)。最终模型的曲线下面积(AUC)为0.85(95%CI 0.83 - 0.87),Hosmer-Lemeshow检验统计量p = 0.83。自助法交叉验证显示AUC相同。

结论

我们利用创伤登记数据推导并内部验证了一个创伤风险预测规则。这可能有助于制定修订后的地方和区域创伤分诊方案。实施前需要进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验