Suppr超能文献

对控制节律性活动的电耦合脑干神经元的反馈激发、起搏器特性和感觉转换进行建模。

Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

作者信息

Hull Michael J, Soffe Stephen R, Willshaw David J, Roberts Alan

机构信息

Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom.

School of Biological Sciences, University of Bristol, Bristol, United Kingdom.

出版信息

PLoS Comput Biol. 2016 Jan 29;12(1):e1004702. doi: 10.1371/journal.pcbi.1004702. eCollection 2016 Jan.

Abstract

What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

摘要

哪些细胞和网络特性能够实现可靠的神经元节律生成或放电,并且可以通过短暂的突触输入启动和停止?我们研究了驱动幼蛙蝌蚪游泳运动的脑干神经元电耦合群体中的节律性活动,以及短暂的感觉刺激如何开启和关闭这种活动。我们构建了一个由蝌蚪后脑和脊髓一侧的30个电耦合条件起搏器神经元组成的计算模型。基于对神经元特性、群体大小、突触强度和连接的实验估计,我们表明:神经元之间持久的、相互的谷氨酸能兴奋使网络在短暂的突触兴奋后能够以游泳频率维持节律性起搏器放电;没有电耦合时,活动持续但节律瓦解;NMDA电压依赖性使产生持续节律的突触反馈强度范围加倍。通过短暂的突触兴奋和抑制,网络可以在短潜伏期内开启和关闭。我们证明,由谷氨酸能兴奋性反馈耦合的一组通用霍奇金-赫胥黎型神经元可以产生通过突触开启和关闭的持续异步放电。我们得出结论,具有NMDAR介导的反馈兴奋的神经元网络在短暂的突触兴奋后可以产生自我维持的活动。活动频率受神经元膜通道动力学的限制,并且可以通过短暂的抑制性输入停止。如果神经元电耦合,网络活动在较低频率下可以是有节律的。我们的关键发现是,神经元群体内的兴奋性突触反馈可以在没有突触抑制的情况下产生可切换、稳定、持续的放电。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f7b/4732667/65f7ccac5844/pcbi.1004702.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验