Suppr超能文献

在斑马鱼肾脏发育过程中,肾单位小管中的上皮细胞命运由ETS转录因子etv5a和etv4介导。

Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development.

作者信息

Marra Amanda N, Wingert Rebecca A

机构信息

Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA.

Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Dev Biol. 2016 Mar 15;411(2):231-245. doi: 10.1016/j.ydbio.2016.01.035. Epub 2016 Jan 29.

Abstract

Kidney development requires the differentiation and organization of discrete nephron epithelial lineages, yet the genetic and molecular pathways involved in these events remain poorly understood. The embryonic zebrafish kidney, or pronephros, provides a simple and useful model to study nephrogenesis. The pronephros is primarily comprised of two types of epithelial cells: transportive and multiciliated cells (MCCs). Transportive cells occupy distinct tubule segments and are characterized by the expression of various solute transporters, while MCCs function in fluid propulsion and are dispersed in a "salt-and-pepper" fashion within the tubule. Epithelial cell identity is reliant on interplay between the Notch signaling pathway and retinoic acid (RA) signaling, where RA promotes MCC fate by inhibiting Notch activity in renal progenitors, while Notch acts downstream to trigger transportive cell formation and block adoption of an MCC identity. Previous research has shown that the transcription factor ets variant 5a (etv5a), and its closely related ETS family members, are required for ciliogenesis in other zebrafish tissues. Here, we mapped etv5a expression to renal progenitors that occupy domains where MCCs later emerge. Thus, we hypothesized that etv5a is required for normal development of MCCs in the nephron. etv5a loss of function caused a decline of MCC number as indicated by the reduced frequency of cells that expressed the MCC-specific markers outer dense fiber of sperm tails 3b (odf3b) and centrin 4 (cetn4), where rescue experiments partially restored MCC incidence. Interestingly, deficiency of ets variant 4 (etv4), a related gene that is broadly expressed in the posterior mesoderm during somitogenesis stages, also led to reduced MCC numbers, which were further reduced by dual etv5a/4 deficiency, suggesting that both of these ETS factors are essential for MCC formation and that they also might have redundant activities. In epistatic studies, exogenous RA treatment expanded the etv5a domain within the renal progenitor field and RA inhibition blocked etv5a in this populace, indicating that etv5a acts downstream of RA. Additionally, treatment with exogenous RA partially rescued the reduced MCC phenotype after loss of etv5a. Further, abrogation of Notch with the small molecule inhibitor DAPT increased the renal progenitor etv5a expression domain as well as MCC density in etv5a deficient embryos, suggesting Notch acts upstream to inhibit etv5a. In contrast, etv4 levels in renal progenitors were unaffected by changes in RA or Notch signaling levels, suggesting a possible non-cell autonomous role during pronephros formation. Taken together, these findings have revealed new insights about the genetic mechanisms of epithelial cell development during nephrogenesis.

摘要

肾脏发育需要离散的肾单位上皮谱系进行分化和组织,然而参与这些过程的基因和分子途径仍知之甚少。胚胎斑马鱼的肾脏,即前肾,为研究肾发生提供了一个简单而有用的模型。前肾主要由两种类型的上皮细胞组成:转运细胞和多纤毛细胞(MCCs)。转运细胞占据不同的肾小管节段,并以各种溶质转运蛋白的表达为特征,而MCCs在液体推进中起作用,并以“椒盐”方式分散在肾小管内。上皮细胞身份依赖于Notch信号通路和视黄酸(RA)信号通路之间的相互作用,其中RA通过抑制肾祖细胞中的Notch活性来促进MCC命运,而Notch在下游起作用以触发转运细胞形成并阻止MCC身份的获得。先前的研究表明,转录因子ets变体5a(etv5a)及其密切相关的ETS家族成员是斑马鱼其他组织中纤毛发生所必需的。在这里,我们将etv5a的表达定位到占据MCCs后来出现区域的肾祖细胞。因此,我们假设etv5a是肾单位中MCCs正常发育所必需的。etv5a功能丧失导致MCC数量减少,这通过表达MCC特异性标记精子尾部外致密纤维3b(odf3b)和中心蛋白4(cetn4)的细胞频率降低来表明,其中挽救实验部分恢复了MCC发生率。有趣的是,ets变体4(etv4)的缺陷,一个在体节发生阶段在后中胚层广泛表达的相关基因,也导致MCC数量减少,而etv5a/4双重缺陷进一步降低了MCC数量,这表明这两个ETS因子对于MCC形成都是必不可少的,并且它们也可能具有冗余活性。在上位性研究中,外源性RA处理扩大了肾祖细胞区域内的etv5a结构域,而RA抑制则在该群体中阻断了etv5a,表明etv5a在RA下游起作用。此外,用小分子抑制剂DAPT消除Notch增加了etv5a缺陷胚胎中肾祖细胞etv5a的表达结构域以及MCC密度,表明Notch在 upstream起作用以抑制etv5a。相比之下,肾祖细胞中的etv4水平不受RA或Notch信号水平变化的影响,这表明在原肾形成过程中可能存在非细胞自主作用。综上所述,这些发现揭示了肾发生过程中上皮细胞发育遗传机制的新见解。

相似文献

2
Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling.
Dev Biol. 2014 Feb 1;386(1):111-22. doi: 10.1016/j.ydbio.2013.11.021. Epub 2013 Dec 3.
5
The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish.
Dev Biol. 2017 Jan 1;421(1):52-66. doi: 10.1016/j.ydbio.2016.10.019. Epub 2016 Nov 11.
6
Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta.
Dev Biol. 2014 Dec 15;396(2):183-200. doi: 10.1016/j.ydbio.2014.08.038. Epub 2014 Oct 14.
9
Prostaglandin signaling regulates renal multiciliated cell specification and maturation.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8409-8418. doi: 10.1073/pnas.1813492116. Epub 2019 Apr 4.
10
Development of the zebrafish mesonephros.
Genesis. 2015 Mar-Apr;53(3-4):257-69. doi: 10.1002/dvg.22846. Epub 2015 Mar 14.

引用本文的文献

1
is essential for zebrafish embryogenesis and pronephros formation.
Front Cell Dev Biol. 2024 Dec 11;12:1496244. doi: 10.3389/fcell.2024.1496244. eCollection 2024.
2
Emx2 is an essential regulator of ciliated cell development across embryonic tissues.
iScience. 2024 Oct 28;27(12):111271. doi: 10.1016/j.isci.2024.111271. eCollection 2024 Dec 20.
3
Using Zebrafish to Study Multiciliated Cell Development and Disease States.
Cells. 2024 Oct 23;13(21):1749. doi: 10.3390/cells13211749.
4
Bibliometric analysis of research on retinoic acid in the field of kidney disorders.
Front Pharmacol. 2024 Aug 15;15:1435889. doi: 10.3389/fphar.2024.1435889. eCollection 2024.
5
(Zebra)fishing for nephrogenesis genes.
Tissue Barriers. 2024 Apr 2;12(2):2219605. doi: 10.1080/21688370.2023.2219605. Epub 2023 May 31.
6
Esrrγa regulates nephron and ciliary development by controlling prostaglandin synthesis.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201411. Epub 2023 May 26.
7
Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease.
Biomedicines. 2023 Apr 15;11(4):1180. doi: 10.3390/biomedicines11041180.
8
Principles of Zebrafish Nephron Segment Development.
J Dev Biol. 2023 Mar 18;11(1):14. doi: 10.3390/jdb11010014.
9
Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney.
Cells. 2023 Feb 20;12(4):666. doi: 10.3390/cells12040666.
10
Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish.
J Dev Biol. 2023 Feb 20;11(1):9. doi: 10.3390/jdb11010009.

本文引用的文献

1
Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies.
Cells. 2015 Sep 11;4(3):483-99. doi: 10.3390/cells4030483.
3
US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States.
Am J Kidney Dis. 2015 Jul;66(1 Suppl 1):Svii, S1-305. doi: 10.1053/j.ajkd.2015.05.001.
5
Recent advances in elucidating the genetic mechanisms of nephrogenesis using zebrafish.
Cells. 2015 May 27;4(2):218-33. doi: 10.3390/cells4020218.
7
Temporal and spatial expression of tight junction genes during zebrafish pronephros development.
Gene Expr Patterns. 2014 Nov;16(2):104-13. doi: 10.1016/j.gep.2014.11.001. Epub 2014 Nov 7.
8
Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta.
Dev Biol. 2014 Dec 15;396(2):183-200. doi: 10.1016/j.ydbio.2014.08.038. Epub 2014 Oct 14.
9
Congenital anomalies of the kidney and urinary tract: an embryogenetic review.
Birth Defects Res C Embryo Today. 2014 Dec;102(4):374-81. doi: 10.1002/bdrc.21084. Epub 2014 Nov 25.
10
Multiciliated cells.
Curr Biol. 2014 Oct 6;24(19):R973-82. doi: 10.1016/j.cub.2014.08.047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验