Suppr超能文献

当个体比群体更重要时(二):使用非参数统计解决基于体素的单病例形态测量中高假阳性率的问题。

When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics.

作者信息

Scarpazza Cristina, Nichols Thomas E, Seramondi Donato, Maumet Camille, Sartori Giuseppe, Mechelli Andrea

机构信息

Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK.

Department of Statistics, University of WarwickCoventry, UK; Warwick Manufacturing Group, University of WarwickCoventry, UK.

出版信息

Front Neurosci. 2016 Jan 25;10:6. doi: 10.3389/fnins.2016.00006. eCollection 2016.

Abstract

In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used to characterize neuroanatomical alterations in individual subjects as long as non-parametric statistics are employed.

摘要

近年来,越来越多的研究使用基于体素的形态测量法(VBM),将患有特定精神或神经疾病的单一患者与一组健康对照进行比较。然而,这种方法的有效性严重依赖于这样一个假设,即该单一患者来自一个假设的总体,其具有正态分布且方差与对照组相等。在之前的一项研究中,我们证明了单病例VBM中的家族性假阳性错误率(即产生至少一个假阳性的统计比较比例)远高于预期(斯卡帕扎等人,2013年)。在此,我们研究使用不依赖于正态分布和等方差假设的非参数统计方法,是否能够在有效控制假阳性风险的情况下对单一受试者进行研究。我们通过在一名无疾病个体与一组100名无疾病对照之间进行400次统计比较,实证估计了单病例非参数VBM中的假阳性率(FPR)。还研究了平滑处理(4毫米、8毫米和12毫米)和预处理类型(调制、未调制)的影响,因为在之前使用参数统计的研究中发现这些因素会影响FPR。为了使结果具有最大的普遍性,使用两个独立的、免费可得的数据集重复进行这400次统计比较。我们发现,在一个数据集中,家族性错误率在增加时为5%,在减少时为3.6%;在另一个数据集中,增加时为5.6%,减少时为6.3%(名义值为5%)。此外,这些结果并不依赖于平滑处理和调制的程度。因此,本研究提供了实证证据,表明采用非参数统计的单病例VBM研究不易出现高假阳性率。这一发现的关键意义在于,只要采用非参数统计,VBM就可用于表征个体受试者的神经解剖学改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a96/4724722/99142b004175/fnins-10-00006-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验