基于体素的形态计量学,在没有特定于扫描仪的正常数据库的情况下,使用卷积神经网络对单个对象进行分析。
Voxel-based morphometry in single subjects without a scanner-specific normal database using a convolutional neural network.
机构信息
jung diagnostics GmbH, Hamburg, Germany.
Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
出版信息
Eur Radiol. 2024 Jun;34(6):3578-3587. doi: 10.1007/s00330-023-10356-1. Epub 2023 Nov 9.
OBJECTIVES
Reliable detection of disease-specific atrophy in individual T1w-MRI by voxel-based morphometry (VBM) requires scanner-specific normal databases (NDB), which often are not available. The aim of this retrospective study was to design, train, and test a deep convolutional neural network (CNN) for single-subject VBM without the need for a NDB (CNN-VBM).
MATERIALS AND METHODS
The training dataset comprised 8945 T1w scans from 65 different scanners. The gold standard VBM maps were obtained by conventional VBM with a scanner-specific NDB for each of the 65 scanners. CNN-VBM was tested in an independent dataset comprising healthy controls (n = 37) and subjects with Alzheimer's disease (AD, n = 51) or frontotemporal lobar degeneration (FTLD, n = 30). A scanner-specific NDB for the generation of the gold standard VBM maps was available also for the test set. The technical performance of CNN-VBM was characterized by the Dice coefficient of CNN-VBM maps relative to VBM maps from scanner-specific VBM. For clinical testing, VBM maps were categorized visually according to the clinical diagnoses in the test set by two independent readers, separately for both VBM methods.
RESULTS
The VBM maps from CNN-VBM were similar to the scanner-specific VBM maps (median Dice coefficient 0.85, interquartile range [0.81, 0.90]). Overall accuracy of the visual categorization of the VBM maps for the detection of AD or FTLD was 89.8% for CNN-VBM and 89.0% for scanner-specific VBM.
CONCLUSION
CNN-VBM without NDB provides a similar performance in the detection of AD- and FTLD-specific atrophy as conventional VBM.
CLINICAL RELEVANCE STATEMENT
A deep convolutional neural network for voxel-based morphometry eliminates the need of scanner-specific normal databases without relevant performance loss and, therefore, could pave the way for the widespread clinical use of voxel-based morphometry to support the diagnosis of neurodegenerative diseases.
KEY POINTS
• The need of normal databases is a barrier for widespread use of voxel-based brain morphometry. • A convolutional neural network achieved a similar performance for detection of atrophy than conventional voxel-based morphometry. • Convolutional neural networks can pave the way for widespread clinical use of voxel-based morphometry.
目的
基于体素的形态计量学(VBM)的可靠检测需要特定于扫描仪的正常数据库(NDB),但通常无法获得。本回顾性研究的目的是设计、训练和测试无需 NDB(CNN-VBM)的单个受试者 VBM 的深度卷积神经网络(CNN)。
材料和方法
训练数据集包含来自 65 个不同扫描仪的 8945 个 T1w 扫描。每个扫描仪的金标准 VBM 图是通过使用特定于扫描仪的 NDB 进行常规 VBM 获得的。CNN-VBM 在包含健康对照者(n=37)、阿尔茨海默病(AD,n=51)或额颞叶变性(FTLD,n=30)的受试者的独立数据集进行了测试。也可以获得用于生成金标准 VBM 图的测试集的特定于扫描仪的 NDB。通过将 CNN-VBM 图与来自特定于扫描仪的 VBM 的 VBM 图的 Dice 系数来描述 CNN-VBM 的技术性能。为了进行临床测试,根据测试集中的临床诊断,由两名独立的读者分别对 VBM 图进行视觉分类,这两种方法都是如此。
结果
CNN-VBM 的 VBM 图与特定于扫描仪的 VBM 图相似(中位数 Dice 系数为 0.85,四分位距 [0.81,0.90])。用于检测 AD 或 FTLD 的 VBM 图的视觉分类的总体准确性为 CNN-VBM 为 89.8%,特定于扫描仪的 VBM 为 89.0%。
结论
无 NDB 的 CNN-VBM 在检测 AD 和 FTLD 特异性萎缩方面的性能与传统 VBM 相似。
临床相关性声明
基于体素的形态计量学的深度卷积神经网络消除了对特定于扫描仪的正常数据库的需求,而不会导致相关性能损失,因此为广泛使用基于体素的形态计量学来支持神经退行性疾病的诊断铺平了道路。
重点
• 对正常数据库的需求是广泛使用基于体素的脑形态计量学的障碍。• 卷积神经网络在检测萎缩方面的性能与传统的基于体素的形态计量学相似。• 卷积神经网络为广泛应用于临床的基于体素的形态计量学铺平了道路。