Suppr超能文献

将放射学定义的肿瘤栖息地的空间多样性特征与胶质母细胞瘤中的表皮生长因子受体驱动状态及12个月生存率相关联:方法与初步研究

Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation.

作者信息

Lee Joonsang, Narang Shivali, Martinez Juan J, Rao Ganesh, Rao Arvind

机构信息

University of Texas , MD Anderson Cancer Center, Department of Bioinformatics and Computational Biology, 1515 Holcombe Boulevard, Houston, Texas 77030, United States.

University of Texas , MD Anderson Cancer Center, Department of Neurosurgery, 1515 Holcombe Boulevard, Houston, Texas 77030, United States.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):041006. doi: 10.1117/1.JMI.2.4.041006. Epub 2015 Aug 25.

Abstract

We analyzed the spatial diversity of tumor habitats, regions with distinctly different intensity characteristics of a tumor, using various measurements of habitat diversity within tumor regions. These features were then used for investigating the association with a 12-month survival status in glioblastoma (GBM) patients and for the identification of epidermal growth factor receptor (EGFR)-driven tumors. T1 postcontrast and T2 fluid attenuated inversion recovery images from 65 GBM patients were analyzed in this study. A total of 36 spatial diversity features were obtained based on pixel abundances within regions of interest. Performance in both the classification tasks was assessed using receiver operating characteristic (ROC) analysis. For association with 12-month overall survival, area under the ROC curve was 0.74 with confidence intervals [0.630 to 0.858]. The sensitivity and specificity at the optimal operating point ([Formula: see text]) on the ROC were 0.59 and 0.75, respectively. For the identification of EGFR-driven tumors, the area under the ROC curve (AUC) was 0.85 with confidence intervals [0.750 to 0.945]. The sensitivity and specificity at the optimal operating point ([Formula: see text]) on the ROC were 0.76 and 0.83, respectively. Our findings suggest that these spatial habitat diversity features are associated with these clinical characteristics and could be a useful prognostic tool for magnetic resonance imaging studies of patients with GBM.

摘要

我们使用肿瘤区域内栖息地多样性的各种测量方法,分析了肿瘤栖息地的空间多样性,即具有明显不同强度特征的肿瘤区域。然后,这些特征被用于研究与胶质母细胞瘤(GBM)患者12个月生存状态的关联,并用于识别表皮生长因子受体(EGFR)驱动的肿瘤。本研究分析了65例GBM患者的T1增强和T2液体衰减反转恢复图像。基于感兴趣区域内的像素丰度,共获得了36个空间多样性特征。使用受试者工作特征(ROC)分析评估了两个分类任务中的性能。对于与12个月总生存的关联,ROC曲线下面积为0.74,置信区间为[0.630至0.858]。ROC上最佳操作点([公式:见正文])处的敏感性和特异性分别为0.59和0.75。对于识别EGFR驱动的肿瘤,ROC曲线下面积(AUC)为0.85,置信区间为[0.750至0.945]。ROC上最佳操作点([公式:见正文])处的敏感性和特异性分别为0.76和0.83。我们的研究结果表明,这些空间栖息地多样性特征与这些临床特征相关,并且可能是GBM患者磁共振成像研究中一种有用的预后工具。

相似文献

引用本文的文献

7
Radiomics in immuno-oncology.免疫肿瘤学中的放射组学。
Immunooncol Technol. 2021 Apr 16;9:100028. doi: 10.1016/j.iotech.2021.100028. eCollection 2021 Mar.

本文引用的文献

2
Genomics of brain tumor imaging.脑肿瘤成像的基因组学
Neuroimaging Clin N Am. 2015 Feb;25(1):105-19. doi: 10.1016/j.nic.2014.09.006.
4
Quantitative imaging in cancer evolution and ecology.癌症进化与生态的定量成像。
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.
5
Tumour heterogeneity in the clinic.临床中的肿瘤异质性。
Nature. 2013 Sep 19;501(7467):355-64. doi: 10.1038/nature12627.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验