Suppr超能文献

影像学特征可提高胶质母细胞瘤患者生存模型的预测能力。

Imaging descriptors improve the predictive power of survival models for glioblastoma patients.

机构信息

Corresponding Author: Jordan Malof, PhD, Department of Electrical & Computer Engineering, Duke University, 130 Hudson Hall, Durham, NC 27708.

出版信息

Neuro Oncol. 2013 Oct;15(10):1389-94. doi: 10.1093/neuonc/nos335. Epub 2013 Feb 7.

Abstract

BACKGROUND

Because effective prediction of survival time can be highly beneficial for the treatment of glioblastoma patients, the relationship between survival time and multiple patient characteristics has been investigated. In this paper, we investigate whether the predictive power of a survival model based on clinical patient features improves when MRI features are also included in the model.

METHODS

The subjects in this study were 82 glioblastoma patients for whom clinical features as well as MR imaging exams were made available by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). Twenty-six imaging features in the available MR scans were assessed by radiologists from the TCGA Glioma Phenotype Research Group. We used multivariate Cox proportional hazards regression to construct 2 survival models: one that used 3 clinical features (age, gender, and KPS) as the covariates and 1 that used both the imaging features and the clinical features as the covariates. Then, we used 2 measures to compare the predictive performance of these 2 models: area under the receiver operating characteristic curve for the 1-year survival threshold and overall concordance index. To eliminate any positive performance estimation bias, we used leave-one-out cross-validation.

RESULTS

The performance of the model based on both clinical and imaging features was higher than the performance of the model based on only the clinical features, in terms of both area under the receiver operating characteristic curve (P < .01) and the overall concordance index (P < .01).

CONCLUSIONS

Imaging features assessed using a controlled lexicon have additional predictive value compared with clinical features when predicting survival time in glioblastoma patients.

摘要

背景

由于有效预测生存时间对胶质母细胞瘤患者的治疗非常有益,因此已经研究了生存时间与多个患者特征之间的关系。在本文中,我们研究了当生存模型中还包含 MRI 特征时,基于临床患者特征的生存模型的预测能力是否会提高。

方法

本研究的受试者为 82 名胶质母细胞瘤患者,他们的临床特征以及磁共振成像检查均由癌症基因组图谱(TCGA)和癌症成像档案(TCIA)提供。TCGA 神经胶质瘤表型研究小组的放射科医生评估了可用磁共振扫描中的 26 个影像学特征。我们使用多变量 Cox 比例风险回归来构建 2 个生存模型:一个模型使用 3 个临床特征(年龄、性别和 KPS)作为协变量,另一个模型使用影像学特征和临床特征作为协变量。然后,我们使用 2 个指标来比较这 2 个模型的预测性能:用于 1 年生存阈值的接收者操作特征曲线下面积和整体一致性指数。为了消除任何正向性能估计偏差,我们使用了留一交叉验证。

结果

基于临床和影像学特征的模型的性能均高于仅基于临床特征的模型,在接收者操作特征曲线下面积(P <.01)和整体一致性指数(P <.01)方面均如此。

结论

与临床特征相比,使用受控词汇评估的影像学特征在预测胶质母细胞瘤患者的生存时间方面具有额外的预测价值。

相似文献

1
Imaging descriptors improve the predictive power of survival models for glioblastoma patients.
Neuro Oncol. 2013 Oct;15(10):1389-94. doi: 10.1093/neuonc/nos335. Epub 2013 Feb 7.
2
Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
Acad Radiol. 2019 Oct;26(10):1292-1300. doi: 10.1016/j.acra.2018.12.016. Epub 2019 Jan 17.
4
Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients.
J Neuroradiol. 2015 Jul;42(4):212-21. doi: 10.1016/j.neurad.2014.02.006. Epub 2014 Jul 2.
6
Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients.
Strahlenther Onkol. 2018 Jun;194(6):580-590. doi: 10.1007/s00066-018-1276-4. Epub 2018 Feb 13.
7
Texture Feature Ratios from Relative CBV Maps of Perfusion MRI Are Associated with Patient Survival in Glioblastoma.
AJNR Am J Neuroradiol. 2016 Jan;37(1):37-43. doi: 10.3174/ajnr.A4534. Epub 2015 Oct 15.

引用本文的文献

1
Preoperative MR - based model for predicting prognosis in patients with intracranial extraventricular ependymoma.
Eur J Radiol Open. 2025 Apr 8;14:100650. doi: 10.1016/j.ejro.2025.100650. eCollection 2025 Jun.
3
Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study.
Neuro Oncol. 2025 May 15;27(4):1102-1115. doi: 10.1093/neuonc/noae260.
4
Evaluation of glial tumors: correlation between magnetic resonance imaging and histopathological analysis.
Radiol Bras. 2024 Sep 16;57:e20240025. doi: 10.1590/0100-3984.2024.0025. eCollection 2024 Jan-Dec.
5
Shape matters: unsupervised exploration of IDH-wildtype glioma imaging survival predictors.
Eur Radiol. 2025 Mar;35(3):1351-1360. doi: 10.1007/s00330-024-11042-6. Epub 2024 Sep 9.
6
Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance.
AJNR Am J Neuroradiol. 2024 Aug 9;45(8):1053-1062. doi: 10.3174/ajnr.A8274.
7
Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN.
Phys Eng Sci Med. 2024 Sep;47(3):1227-1243. doi: 10.1007/s13246-024-01443-8. Epub 2024 Jun 17.
8
Nomogram incorporating preoperative MRI-VASARI features for differentiating intracranial extraventricular ependymoma from glioblastoma.
Quant Imaging Med Surg. 2024 Mar 15;14(3):2255-2266. doi: 10.21037/qims-23-1148. Epub 2024 Mar 7.
9
Imaging predictors of 4q12 amplified and RB1 mutated glioblastoma IDH-wildtype.
J Neurooncol. 2024 Mar;167(1):99-109. doi: 10.1007/s11060-024-04575-9. Epub 2024 Feb 13.

本文引用的文献

1
MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set.
Radiology. 2013 May;267(2):560-9. doi: 10.1148/radiol.13120118. Epub 2013 Feb 7.
2
A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature.
PLoS One. 2012;7(8):e41522. doi: 10.1371/journal.pone.0041522. Epub 2012 Aug 3.
5
pROC: an open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011 Mar 17;12:77. doi: 10.1186/1471-2105-12-77.
6
Scale to predict survival after surgery for recurrent glioblastoma multiforme.
J Clin Oncol. 2010 Aug 20;28(24):3838-43. doi: 10.1200/JCO.2010.30.0582. Epub 2010 Jul 19.
8
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
9
A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?
Bioinformatics. 2008 Oct 1;24(19):2200-8. doi: 10.1093/bioinformatics/btn374. Epub 2008 Jul 17.
10
Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias.
Neurosurgery. 2008 Mar;62(3):564-76; discussion 564-76. doi: 10.1227/01.neu.0000317304.31579.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验