Odongo Steven, Sterckx Yann G J, Stijlemans Benoît, Pillay Davita, Baltz Théo, Muyldermans Serge, Magez Stefan
Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Brussels, Belgium.
Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
PLoS Negl Trop Dis. 2016 Feb 2;10(2):e0004420. doi: 10.1371/journal.pntd.0004420. eCollection 2016 Feb.
Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system.
METHODOLOGY/PRINCIPAL FINDINGS: An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase.
CONCLUSIONS/SIGNIFICANCE: The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.
传染病对全球人类和牲畜健康构成严重威胁。虽然早期诊断能够及时采取预防干预措施,但大多数疾病出现在农村地区,那里基本的实验室设施匮乏。在这种野外条件下,即时检测免疫分析为快速可靠的诊断提供了合适的解决方案。该分析方法开发中的限制步骤是鉴定合适的靶抗原以及选择合适的高亲和力捕获和检测抗体。为应对这些挑战,我们描述了一种基于纳米抗体(Nb)的抗原检测分析方法的开发,该方法源自针对感染因子可溶性蛋白质组的纳米抗体文库。在本研究中,选择刚果锥虫作为模型系统。
方法/主要发现:用全寄生虫可溶性蛋白质组对一只羊驼进行免疫接种,以生成纳米抗体文库,从中选择了最有效的刚果锥虫特异性纳米抗体夹心免疫分析方法(Nb474H-Nb474B)。首先,Nb474同源夹心酶联免疫吸附测定(Nb474-ELISA)显示出对实验性感染具有高阳性预测值(98%)、敏感性(87%)和特异性(94%)。其次,在实验条件下证明该分析方法可用于检测贝尼尔治疗后的治愈情况。最后,该分析方法实现了靶抗原的鉴定。通过免疫捕获从(i)刚果锥虫可溶性蛋白质组、(ii)刚果锥虫分泌蛋白质组制剂和(iii)刚果锥虫感染小鼠的血清中独立纯化出靶抗原。随后的质谱分析确定靶抗原为刚果锥虫糖体醛缩酶。
结论/意义:结果表明,糖体醛缩酶是刚果锥虫活动性感染的候选生物标志物。此外,通过原理验证,数据表明此处设计的纳米抗体策略为诊断开发和靶标发现提供了一种独特的方法,可广泛应用于其他传染病。