Suppr超能文献

心脏中吲哚菁绿的电压敏感性荧光

Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart.

作者信息

Martišienė Irma, Mačianskienė Regina, Treinys Rimantas, Navalinskas Antanas, Almanaitytė Mantė, Karčiauskas Dainius, Kučinskas Audrius, Grigalevičiūtė Ramunė, Zigmantaitė Vilma, Benetis Rimantas, Jurevičius Jonas

机构信息

Lithuanian University of Health Sciences, Kaunas, Lithuania.

Lithuanian University of Health Sciences, Kaunas, Lithuania.

出版信息

Biophys J. 2016 Feb 2;110(3):723-732. doi: 10.1016/j.bpj.2015.12.021.

Abstract

So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic.

摘要

到目前为止,使用电压敏感染料对心脏电信号进行光学映射仅在实验研究中进行,因为这些染料尚未被批准用于临床。最近有报道称,已获得美国食品药品监督管理局(FDA)批准的、广为人知且广泛使用的荧光染料吲哚菁绿(ICG)在各种组织中表现出电压敏感性,这使得人们燃起了在临床上对电活动进行光学映射的希望。本研究的目的是探索使用ICG监测心脏电活动的可能性。对用ICG染色并用机电解偶联剂灌注的Langendorff兔心脏进行了光学映射实验。同时记录残余收缩力和电动作电位。我们的研究证实,ICG是一种对膜电位变化具有双组分(快速和慢速)响应的电压敏感染料。光信号(OS)的快速组分在荧光光谱的不同部分可以具有相反的极性。相比之下,慢速组分的极性在整个光谱中保持不变。将OS分离为这些组分揭示了ICG的两种不同的电压敏感机制。OS的快速组分本质上似乎是电致变色的,而慢速组分可能源于染料分子在膜内或膜周围的重新分布。两个组分都相当准确地跟踪电信号传播的时间,但只有快速组分适合估计动作电位的形状和持续时间。由于ICG在整个心脏中都具有电压敏感特性,我们建议它可用于临床上监测心脏电行为。

相似文献

1
Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart.
Biophys J. 2016 Feb 2;110(3):723-732. doi: 10.1016/j.bpj.2015.12.021.
2
Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart.
Sci Rep. 2017 Aug 11;7(1):7983. doi: 10.1038/s41598-017-08168-7.
3
Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings.
PLoS One. 2015 Apr 16;10(4):e0123050. doi: 10.1371/journal.pone.0123050. eCollection 2015.
4
Real-time imaging of electrical signals with an infrared FDA-approved dye.
Biophys J. 2014 Sep 16;107(6):L09-12. doi: 10.1016/j.bpj.2014.07.054.
5
Multiparametric optical mapping of the Langendorff-perfused rabbit heart.
J Vis Exp. 2011 Sep 13(55):3160. doi: 10.3791/3160.
6
Image-based motion correction for optical mapping of cardiac electrical activity.
Ann Biomed Eng. 2015 May;43(5):1235-46. doi: 10.1007/s10439-014-1172-8. Epub 2014 Nov 11.
7
Optical mapping of the pig heart in situ under artificial blood circulation.
Sci Rep. 2020 May 22;10(1):8548. doi: 10.1038/s41598-020-65464-5.
8
Electromechanical optical mapping.
Prog Biophys Mol Biol. 2017 Nov;130(Pt B):150-169. doi: 10.1016/j.pbiomolbio.2017.09.015. Epub 2017 Sep 22.
9
Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
J Cardiovasc Electrophysiol. 1996 Nov;7(11):1024-38. doi: 10.1111/j.1540-8167.1996.tb00478.x.
10
[A new approach for studying the retinal and choroidal circulation].
Nippon Ganka Gakkai Zasshi. 2004 Dec;108(12):836-61; discussion 862.

引用本文的文献

1
DNA-Based Near-Infrared Voltage Sensors.
ACS Sens. 2023 Oct 27;8(10):3680-3686. doi: 10.1021/acssensors.3c01429. Epub 2023 Sep 19.
2
Near-infrared voltage-sensitive dyes based on chromene donor.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2305093120. doi: 10.1073/pnas.2305093120. Epub 2023 Aug 14.
3
Cardiac Optical Mapping in Situ in Swine Models: A View of the Current Situation.
Medicina (Kaunas). 2020 Nov 18;56(11):620. doi: 10.3390/medicina56110620.
4
Optical mapping of the pig heart in situ under artificial blood circulation.
Sci Rep. 2020 May 22;10(1):8548. doi: 10.1038/s41598-020-65464-5.
5
Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems.
Adv Sci (Weinh). 2020 Feb 27;7(8):1903783. doi: 10.1002/advs.201903783. eCollection 2020 Apr.
7
In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
Cardiovasc Res. 2019 Sep 1;115(11):1659-1671. doi: 10.1093/cvr/cvz039.
9
A new look at the heart-novel imaging techniques.
Herzschrittmacherther Elektrophysiol. 2018 Mar;29(1):14-23. doi: 10.1007/s00399-017-0546-7. Epub 2017 Dec 14.
10

本文引用的文献

1
Design and Use of Organic Voltage Sensitive Dyes.
Adv Exp Med Biol. 2015;859:27-53. doi: 10.1007/978-3-319-17641-3_2.
2
Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings.
PLoS One. 2015 Apr 16;10(4):e0123050. doi: 10.1371/journal.pone.0123050. eCollection 2015.
3
Evolution of action potential alternans in rabbit heart during acute regional ischemia.
Biomed Res Int. 2015;2015:951704. doi: 10.1155/2015/951704. Epub 2015 Feb 26.
4
Real-time imaging of electrical signals with an infrared FDA-approved dye.
Biophys J. 2014 Sep 16;107(6):L09-12. doi: 10.1016/j.bpj.2014.07.054.
5
Subepicardial action potential characteristics are a function of depth and activation sequence in isolated rabbit hearts.
Circ Arrhythm Electrophysiol. 2013 Aug;6(4):809-17. doi: 10.1161/CIRCEP.113.000334. Epub 2013 Jun 3.
6
A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
IEEE Trans Biomed Eng. 2011 Jul;58(7):2120-6. doi: 10.1109/TBME.2011.2148719. Epub 2011 May 2.
7
Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts.
Heart Rhythm. 2010 Dec;7(12):1843-9. doi: 10.1016/j.hrthm.2010.08.019. Epub 2010 Sep 29.
8
Heterogeneity and cardiac arrhythmias: an overview.
Heart Rhythm. 2007 Jul;4(7):964-72. doi: 10.1016/j.hrthm.2007.03.036. Epub 2007 Apr 6.
9
Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems.
Biophys J. 2007 Oct 15;93(8):2892-9. doi: 10.1529/biophysj.107.111609. Epub 2007 Jun 15.
10
Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts.
Heart Rhythm. 2007 May;4(5):619-26. doi: 10.1016/j.hrthm.2006.12.047. Epub 2007 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验