Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, 1 Keble Road, OX1 3NP, UK.
Nat Commun. 2019 Jul 31;10(1):3434. doi: 10.1038/s41467-019-11360-0.
Bacterial contamination of biological channels, catheters or water resources is a major threat to public health, which can be amplified by the ability of bacteria to swim upstream. The mechanisms of this 'rheotaxis', the reorientation with respect to flow gradients, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow using 3D Lagrangian tracking and fluorescent flagellar labelling. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A theoretical analysis explains these rheotaxis regimes and predicts the corresponding critical shear rates. Our results shed light on bacterial transport and reveal strategies for contamination prevention, rheotactic cell sorting, and microswimmer navigation in complex flow environments.
生物通道、导管或水资源中的细菌污染对公共健康是一个重大威胁,而细菌逆流而上的能力加剧了这种威胁。这种“趋流性”(即根据流梯度重新定向)的机制仍未得到充分理解。在这里,我们使用三维拉格朗日追踪和荧光鞭毛标记,跟踪在剪切流下在表面游动的单个大肠杆菌。随着剪切率的增加,我们确定了三种转变:在第一临界剪切率之上,细菌会转向逆流游动。在第二个阈值之后,我们报告了发现了一种振荡趋流性。在第三个转变之后,我们进一步观察到沿着正和负涡度方向的趋流性共存。理论分析解释了这些趋流性状态,并预测了相应的临界剪切率。我们的研究结果揭示了细菌的输运机制,并为污染预防、趋流性细胞分选以及在复杂流动环境中的微游泳者导航提供了策略。