Suppr超能文献

用一把机器人钥匙解锁神经复杂性。

Unlocking neural complexity with a robotic key.

作者信息

Stratton Peter, Hasselmo Michael, Milford Michael

机构信息

Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.

Department of Psychology, Program in Neurosciences, Boston University, Boston, MA, USA.

出版信息

J Physiol. 2016 Nov 15;594(22):6559-6567. doi: 10.1113/JP271444. Epub 2016 Mar 9.

Abstract

Complex brains evolved in order to comprehend and interact with complex environments in the real world. Despite significant progress in our understanding of perceptual representations in the brain, our understanding of how the brain carries out higher level processing remains largely superficial. This disconnect is understandable, since the direct mapping of sensory inputs to perceptual states is readily observed, while mappings between (unknown) stages of processing and intermediate neural states is not. We argue that testing theories of higher level neural processing on robots in the real world offers a clear path forward, since (1) the complexity of the neural robotic controllers can be staged as necessary, avoiding the almost intractable complexity apparent in even the simplest current living nervous systems; (2) robotic controller states are fully observable, avoiding the enormous technical challenge of recording from complete intact brains; and (3) unlike computational modelling, the real world can stand for itself when using robots, avoiding the computational intractability of simulating the world at an arbitrary level of detail. We suggest that embracing the complex and often unpredictable closed-loop interactions between robotic neuro-controllers and the physical world will bring about deeper understanding of the role of complex brain function in the high-level processing of information and the control of behaviour.

摘要

复杂的大脑不断进化,以便理解现实世界中的复杂环境并与之互动。尽管我们在理解大脑中的感知表征方面取得了重大进展,但我们对大脑如何进行高级处理的理解在很大程度上仍停留在表面。这种脱节是可以理解的,因为感官输入到感知状态的直接映射很容易观察到,而处理阶段(未知)与中间神经状态之间的映射则不然。我们认为,在现实世界中对机器人进行高级神经处理理论的测试提供了一条清晰的前进道路,因为:(1)神经机器人控制器的复杂性可以根据需要进行分级,避免了即使是最简单的当前活体神经系统中也明显存在的几乎难以处理的复杂性;(2)机器人控制器状态是完全可观察的,避免了从完整无损的大脑进行记录所面临的巨大技术挑战;(3)与计算建模不同,使用机器人时现实世界本身就可以代表自身,避免了在任意细节水平上模拟世界的计算难题。我们建议,接受机器人神经控制器与物理世界之间复杂且通常不可预测的闭环交互,将使我们更深入地理解复杂脑功能在信息高级处理和行为控制中的作用。

相似文献

1
Unlocking neural complexity with a robotic key.用一把机器人钥匙解锁神经复杂性。
J Physiol. 2016 Nov 15;594(22):6559-6567. doi: 10.1113/JP271444. Epub 2016 Mar 9.
7
Statistical complexity is maximized in a small-world brain.统计复杂性在小世界大脑中达到最大化。
PLoS One. 2017 Aug 29;12(8):e0183918. doi: 10.1371/journal.pone.0183918. eCollection 2017.
9
Neural architectures for robot intelligence.用于机器人智能的神经架构。
Rev Neurosci. 2003;14(1-2):121-43. doi: 10.1515/revneuro.2003.14.1-2.121.
10
iSpike: a spiking neural interface for the iCub robot.iSpike:一种用于 iCub 机器人的尖峰神经网络接口。
Bioinspir Biomim. 2012 Jun;7(2):025008. doi: 10.1088/1748-3182/7/2/025008. Epub 2012 May 22.

引用本文的文献

1
Neural mechanisms for spatial computation.空间计算的神经机制。
J Physiol. 2016 Nov 15;594(22):6487-6488. doi: 10.1113/JP273087.

本文引用的文献

2
Neuroscience. The atoms of neural computation.神经科学。神经计算的原子。
Science. 2014 Oct 31;346(6209):551-2. doi: 10.1126/science.1261661.
3
Robotics and neuroscience.机器人技术与神经科学。
Curr Biol. 2014 Sep 22;24(18):R910-R920. doi: 10.1016/j.cub.2014.07.058.
5
The metastable brain.亚稳态大脑。
Neuron. 2014 Jan 8;81(1):35-48. doi: 10.1016/j.neuron.2013.12.022.
6
A computational model for preplay in the hippocampus.海马体预演的计算模型。
Front Comput Neurosci. 2013 Nov 12;7:161. doi: 10.3389/fncom.2013.00161. eCollection 2013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验