Stratton Peter, Hasselmo Michael, Milford Michael
Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.
Department of Psychology, Program in Neurosciences, Boston University, Boston, MA, USA.
J Physiol. 2016 Nov 15;594(22):6559-6567. doi: 10.1113/JP271444. Epub 2016 Mar 9.
Complex brains evolved in order to comprehend and interact with complex environments in the real world. Despite significant progress in our understanding of perceptual representations in the brain, our understanding of how the brain carries out higher level processing remains largely superficial. This disconnect is understandable, since the direct mapping of sensory inputs to perceptual states is readily observed, while mappings between (unknown) stages of processing and intermediate neural states is not. We argue that testing theories of higher level neural processing on robots in the real world offers a clear path forward, since (1) the complexity of the neural robotic controllers can be staged as necessary, avoiding the almost intractable complexity apparent in even the simplest current living nervous systems; (2) robotic controller states are fully observable, avoiding the enormous technical challenge of recording from complete intact brains; and (3) unlike computational modelling, the real world can stand for itself when using robots, avoiding the computational intractability of simulating the world at an arbitrary level of detail. We suggest that embracing the complex and often unpredictable closed-loop interactions between robotic neuro-controllers and the physical world will bring about deeper understanding of the role of complex brain function in the high-level processing of information and the control of behaviour.
复杂的大脑不断进化,以便理解现实世界中的复杂环境并与之互动。尽管我们在理解大脑中的感知表征方面取得了重大进展,但我们对大脑如何进行高级处理的理解在很大程度上仍停留在表面。这种脱节是可以理解的,因为感官输入到感知状态的直接映射很容易观察到,而处理阶段(未知)与中间神经状态之间的映射则不然。我们认为,在现实世界中对机器人进行高级神经处理理论的测试提供了一条清晰的前进道路,因为:(1)神经机器人控制器的复杂性可以根据需要进行分级,避免了即使是最简单的当前活体神经系统中也明显存在的几乎难以处理的复杂性;(2)机器人控制器状态是完全可观察的,避免了从完整无损的大脑进行记录所面临的巨大技术挑战;(3)与计算建模不同,使用机器人时现实世界本身就可以代表自身,避免了在任意细节水平上模拟世界的计算难题。我们建议,接受机器人神经控制器与物理世界之间复杂且通常不可预测的闭环交互,将使我们更深入地理解复杂脑功能在信息高级处理和行为控制中的作用。