Debelak Rudolf, Tran Ulrich S
SCHUHFRIED GmbH, Mödling, Austria.
University of Zurich, Zurich, Switzerland.
PLoS One. 2016 Feb 4;11(2):e0148143. doi: 10.1371/journal.pone.0148143. eCollection 2016.
The analysis of polychoric correlations via principal component analysis and exploratory factor analysis are well-known approaches to determine the dimensionality of ordered categorical items. However, the application of these approaches has been considered as critical due to the possible indefiniteness of the polychoric correlation matrix. A possible solution to this problem is the application of smoothing algorithms. This study compared the effects of three smoothing algorithms, based on the Frobenius norm, the adaption of the eigenvalues and eigenvectors, and on minimum-trace factor analysis, on the accuracy of various variations of parallel analysis by the means of a simulation study. We simulated different datasets which varied with respect to the size of the respondent sample, the size of the item set, the underlying factor model, the skewness of the response distributions and the number of response categories in each item. We found that a parallel analysis and principal component analysis of smoothed polychoric and Pearson correlations led to the most accurate results in detecting the number of major factors in simulated datasets when compared to the other methods we investigated. Of the methods used for smoothing polychoric correlation matrices, we recommend the algorithm based on minimum trace factor analysis.
通过主成分分析和探索性因素分析来分析多列相关是确定有序分类项目维度的常用方法。然而,由于多列相关矩阵可能存在不确定性,这些方法的应用一直被视为具有挑战性。解决这个问题的一个可能方法是应用平滑算法。本研究通过模拟研究,比较了基于弗罗贝尼乌斯范数、特征值和特征向量的调整以及最小迹因素分析的三种平滑算法对平行分析各种变体准确性的影响。我们模拟了不同的数据集,这些数据集在受访者样本大小、项目集大小、潜在因素模型、响应分布的偏度以及每个项目的响应类别数量方面有所不同。我们发现,与我们研究的其他方法相比,对平滑后的多列相关和皮尔逊相关进行平行分析和主成分分析,在检测模拟数据集中主要因素的数量时能得出最准确的结果。在用于平滑多列相关矩阵的方法中,我们推荐基于最小迹因素分析的算法。