Suppr超能文献

确定认知诊断建模中的属性数量。

Determining the Number of Attributes in Cognitive Diagnosis Modeling.

作者信息

Nájera Pablo, Abad Francisco José, Sorrel Miguel A

机构信息

Department of Social Psychology and Methodology, Faculty of Psychology, Autonomous University of Madrid, Madrid, Spain.

出版信息

Front Psychol. 2021 Feb 15;12:614470. doi: 10.3389/fpsyg.2021.614470. eCollection 2021.

Abstract

Cognitive diagnosis models (CDMs) allow classifying respondents into a set of discrete attribute profiles. The internal structure of the test is determined in a Q-matrix, whose correct specification is necessary to achieve an accurate attribute profile classification. Several empirical Q-matrix estimation and validation methods have been proposed with the aim of providing well-specified Q-matrices. However, these methods require the number of attributes to be set in advance. No systematic studies about CDMs dimensionality assessment have been conducted, which contrasts with the vast existing literature for the factor analysis framework. To address this gap, the present study evaluates the performance of several dimensionality assessment methods from the factor analysis literature in determining the number of attributes in the context of CDMs. The explored methods were parallel analysis, minimum average partial, very simple structure, DETECT, empirical Kaiser criterion, exploratory graph analysis, and a machine learning factor forest model. Additionally, a model comparison approach was considered, which consists in comparing the model-fit of empirically estimated Q-matrices. The performance of these methods was assessed by means of a comprehensive simulation study that included different generating number of attributes, item qualities, sample sizes, ratios of the number of items to attribute, correlations among the attributes, attributes thresholds, and generating CDM. Results showed that parallel analysis (with Pearson correlations and mean eigenvalue criterion), factor forest model, and model comparison (with AIC) are suitable alternatives to determine the number of attributes in CDM applications, with an overall percentage of correct estimates above 76% of the conditions. The accuracy increased to 97% when these three methods agreed on the number of attributes. In short, the present study supports the use of three methods in assessing the dimensionality of CDMs. This will allow to test the assumption of correct dimensionality present in the Q-matrix estimation and validation methods, as well as to gather evidence of validity to support the use of the scores obtained with these models. The findings of this study are illustrated using real data from an intelligence test to provide guidelines for assessing the dimensionality of CDM data in applied settings.

摘要

认知诊断模型(CDMs)能够将应答者分类为一组离散的属性概况。测验的内部结构由一个Q矩阵确定,其正确规范对于实现准确的属性概况分类至关重要。为了提供指定良好的Q矩阵,已经提出了几种实证Q矩阵估计和验证方法。然而,这些方法需要预先设定属性数量。目前尚未针对CDMs维度评估进行系统研究,这与因子分析框架下大量的现有文献形成对比。为了填补这一空白,本研究评估了因子分析文献中的几种维度评估方法在确定CDMs背景下属性数量时的性能。所探索的方法包括平行分析、最小平均偏相关、非常简单结构、DETECT、实证凯泽准则、探索性图分析以及机器学习因子森林模型。此外,还考虑了一种模型比较方法,即比较实证估计的Q矩阵的模型拟合度。通过一项全面的模拟研究评估了这些方法的性能,该研究包括不同的生成属性数量、项目质量、样本大小、项目与属性数量之比、属性之间的相关性、属性阈值以及生成的CDM。结果表明,平行分析(采用皮尔逊相关和平均特征值准则)、因子森林模型以及模型比较(采用AIC)是确定CDM应用中属性数量的合适选择,在超过76%的条件下总体正确估计百分比。当这三种方法在属性数量上达成一致时,准确率提高到97%。简而言之,本研究支持使用这三种方法评估CDMs的维度。这将有助于检验Q矩阵估计和验证方法中正确维度的假设,以及收集有效性证据以支持使用这些模型获得的分数。本研究结果通过一项智力测验的真实数据进行说明,为在应用环境中评估CDM数据的维度提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d682/7917061/41b5d6f85396/fpsyg-12-614470-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验