University of Minnesota.
Multivariate Behav Res. 2022 Mar-May;57(2-3):385-407. doi: 10.1080/00273171.2020.1859350. Epub 2020 Dec 30.
We performed two simulation studies that investigated dimensionality recovery in NPD tetrachoric correlation matrices using parallel analysis. In each study, the NPD matrices were rehabilitated by three smoothing algorithms. In Study 1, we replicated the work by Debelak and Tran on the assessment of dimensionality in one- or two-dimensional common factor models. In Study 2, we extended the Debelak and Tran design in three important ways. Specifically, we investigated: (a) a wider range of factors; (b) models with varying amounts of model error; and (c) models generated from more realistic population item parameters. Our results indicated that matrix smoothing of NPD tetrachoric correlation matrices improves the performance of parallel analysis with binary data. However, these improvements were modest and often of trivial size. To demonstrate the effect of matrix smoothing on an empirical data set, we applied parallel analysis and factor analysis to Adjective Checklist data from the California Twin Registry.
我们进行了两项模拟研究,使用平行分析研究 NPD 四度相关矩阵中的维度恢复。在每项研究中,我们使用三种平滑算法来恢复 NPD 矩阵。在研究 1 中,我们复制了 Debelak 和 Tran 关于一维或二维公共因子模型中维度评估的工作。在研究 2 中,我们从三个重要方面扩展了 Debelak 和 Tran 的设计。具体来说,我们研究了:(a)更广泛的因子;(b)具有不同模型误差量的模型;(c)来自更现实的群体项目参数生成的模型。我们的结果表明,对 NPD 四度相关矩阵进行矩阵平滑可以提高二进制数据平行分析的性能。然而,这些改进是适度的,通常是微不足道的。为了说明矩阵平滑对实证数据集的影响,我们对来自加利福尼亚双胞胎登记处的形容词检查表数据应用了平行分析和因子分析。