Suppr超能文献

风险业务:调查数据的因子分析——评估维度错误的可能性。

Risky business: factor analysis of survey data - assessing the probability of incorrect dimensionalisation.

作者信息

van der Eijk Cees, Rose Jonathan

机构信息

Methods and Data Institute, School of Politics and International Relations, University of Nottingham, Nottingham, United Kingdom.

出版信息

PLoS One. 2015 Mar 19;10(3):e0118900. doi: 10.1371/journal.pone.0118900. eCollection 2015.

Abstract

This paper undertakes a systematic assessment of the extent to which factor analysis the correct number of latent dimensions (factors) when applied to ordered-categorical survey items (so-called Likert items). We simulate 2400 data sets of uni-dimensional Likert items that vary systematically over a range of conditions such as the underlying population distribution, the number of items, the level of random error, and characteristics of items and item-sets. Each of these datasets is factor analysed in a variety of ways that are frequently used in the extant literature, or that are recommended in current methodological texts. These include exploratory factor retention heuristics such as Kaiser's criterion, Parallel Analysis and a non-graphical scree test, and (for exploratory and confirmatory analyses) evaluations of model fit. These analyses are conducted on the basis of Pearson and polychoric correlations. We find that, irrespective of the particular mode of analysis, factor analysis applied to ordered-categorical survey data very often leads to over-dimensionalisation. The magnitude of this risk depends on the specific way in which factor analysis is conducted, the number of items, the properties of the set of items, and the underlying population distribution. The paper concludes with a discussion of the consequences of over-dimensionalisation, and a brief mention of alternative modes of analysis that are much less prone to such problems.

摘要

本文对因子分析应用于有序分类调查项目(即所谓的李克特项目)时确定潜在维度(因子)正确数量的程度进行了系统评估。我们模拟了2400个单维李克特项目的数据集,这些数据集在一系列条件下系统变化,如基础总体分布、项目数量、随机误差水平以及项目和项目集的特征。这些数据集中的每一个都以现有文献中常用的或当前方法学文本中推荐的各种方式进行因子分析。这些方法包括探索性因子保留启发法,如凯泽准则、平行分析和非图形碎石检验,以及(用于探索性和验证性分析)模型拟合评估。这些分析是基于皮尔逊相关和多列相关进行的。我们发现,无论具体的分析模式如何,应用于有序分类调查数据的因子分析经常会导致维度过度确定。这种风险的大小取决于进行因子分析的具体方式、项目数量、项目集的属性以及基础总体分布。本文最后讨论了维度过度确定的后果,并简要提及了不太容易出现此类问题的替代分析模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aec/4366083/01e0d1dd528d/pone.0118900.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验