Ghosh Mrinmoy, Sodhi Simrinder Singh, Sharma Neelesh, Mongre Raj Kumar, Kim Nameun, Singh Amit Kumar, Lee Sung Jin, Kim Dae Cheol, Kim Sung Woo, Lee Hak Kyo, Song Ki-Duk, Jeong Dong Kee
Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India.
BMC Genet. 2016 Feb 4;17:35. doi: 10.1186/s12863-016-0341-1.
This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association.
The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes.
The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.
本研究旨在鉴定经济上重要的济州本地猪(JNP)和伯克夏猪品种中肌球蛋白重链1基因(MYH1)的非同义多态性与骨骼肌发育的关联。在此,我们进行了一项计算机模拟分析,重点关注(a)预测MYH1中非同义单核苷酸多态性(nsSNP)对生长功能影响的计算机模拟方法,以及(b)MYH1的分子对接和动态模拟,以预测这些nsSNP对蛋白质 - 蛋白质相互作用的影响。
使用NextGENe(V 2.3.4.)工具通过RNA测序鉴定JNP和伯克夏猪中MYH1的变异。MYH1的基因本体分析显示与肌肉收缩和肌肉器官发育有显著关联。95%置信区间清楚表明,伯克夏猪背最长肌样本中MYH1的mRNA表达明显高于JNP品种。对MYH1进行的计算机模拟分析一致,开源软件工具在JNP中鉴定出4个潜在的nsSNP(L884T、K972C、N981G和Q1285C),在伯克夏猪中鉴定出1个nsSNP(H973G)。此外,研究了蛋白质 - 蛋白质相互作用以调查MYH1突变对与枢纽蛋白关联的影响,发现MYH1与肌球蛋白轻链、可磷酸化的快速骨骼肌MYLPF蛋白密切相关。对MYH1(野生型和4种突变体)和MYLFP的分子对接研究结果表明,野生型复合物显示出比突变体复合物更高的静电能(-466.5千卡/摩尔(-1))、范德华能(-87.3千卡/摩尔(-1))和相互作用能(-835.7千卡/摩尔(-1))。此外,分子动力学模拟显示,与突变体复合物相比,野生型复合物产生更高的均方根偏差(0.2 - 0.55纳米)和更低的均方根波动(约0.08 - 0.3纳米)。
结果表明,JNP中MYH1的L884T、K972C、N981G和Q1285C变异可能是该品种生长性能不佳的原因。本研究是对多态性MYH1进行的开创性深入计算机模拟分析,将为进一步针对性分子诊断和基于群体的研究提供有价值的资源用于改善JNP的生长性能。