Nostramo R, Herman P K
Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
Curr Genet. 2016 Aug;62(3):503-6. doi: 10.1007/s00294-016-0571-9. Epub 2016 Feb 6.
Stress granules (SGs) are evolutionarily conserved ribonucleoprotein (RNP) structures that form in response to a variety of environmental and cellular cues. The presence of these RNP granules has been linked to a number of human diseases, including neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (Li et al., J Cell Biol 201:361-372, 2013; Nonhoff et al., Mol Biol Cell 18:1385-1396, 2007). Understanding how the assembly of these granules is controlled could, therefore, suggest possible routes of therapy for patients afflicted with these conditions. Interestingly, several reports have identified a potential role for protein deubiquitination in the assembly of these RNP granules. In particular, recent work has found that a specific deubiquitinase enzyme, Ubp3, is required for efficient SG formation in S. cerevisiae (Nostramo et al., Mol Cell Biol 36:173-183, 2016). This same enzyme has been linked to SGs in other organisms, including humans and the fission yeast, Schizosaccharomyces pombe (Takahashi et al., Mol Cell Biol 33:815-829, 2013; Wang et al., RNA 18:694-703, 2012). At first glance, these observations suggest that a striking degree of conservation exists for a ubiquitin-based mechanism controlling SG assembly. However, the devil is truly in the details here, as the precise nature of the involvement of this deubiquitinating enzyme seems to vary in each organism. Here, we briefly review these differences and attempt to provide an overarching model for the role of ubiquitin in SG formation.
应激颗粒(SGs)是进化上保守的核糖核蛋白(RNP)结构,其形成是对多种环境和细胞信号的响应。这些RNP颗粒的存在与许多人类疾病有关,包括诸如肌萎缩侧索硬化症(ALS)和2型脊髓小脑共济失调等神经退行性疾病(Li等人,《细胞生物学杂志》201:361 - 372,2013年;Nonhoff等人,《分子生物学细胞》18:1385 - 1396,2007年)。因此,了解这些颗粒的组装是如何被控制的,可能会为患有这些疾病的患者提出可能的治疗途径。有趣的是,一些报告已经确定了蛋白质去泛素化在这些RNP颗粒组装中的潜在作用。特别是,最近的研究发现,一种特定的去泛素酶Ubp3是酿酒酵母中高效形成SG所必需的(Nostramo等人,《分子细胞生物学》36:173 - 183,2016年)。这种相同的酶也与包括人类和裂殖酵母粟酒裂殖酵母在内的其他生物体中的SGs有关(Takahashi等人,《分子细胞生物学》33:815 - 829,2013年;Wang等人,《RNA》18:694 - 703,2012年)。乍一看,这些观察结果表明,基于泛素的控制SG组装的机制存在显著程度的保守性。然而,真正的问题在于细节,因为这种去泛素化酶参与的精确性质在每个生物体中似乎都有所不同。在这里,我们简要回顾这些差异,并试图为泛素在SG形成中的作用提供一个总体模型。