Martínez José I, Merino Pablo, Pinardi Anna L, Gonzalo Otero-Irurueta, López María F, Méndez Javier, Martín-Gago José A
ESISNA Group, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
Center for Astrobiology (INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain.
Sci Rep. 2016 Feb 8;6:20354. doi: 10.1038/srep20354.
The intrinsic atomic mechanisms responsible for electronic doping of epitaxial graphene Moirés on transition metal surfaces is still an open issue. To better understand this process we have carried out a first-principles full characterization of the most representative Moiré superstructures observed on the Gr/Pt(111) system and confronted the results with atomically resolved scanning tunneling microscopy experiments. We find that for all reported Moirés the system relaxes inducing a non-negligible atomic corrugation both, at the graphene and at the outermost platinum layer. Interestingly, a mirror "anti-Moiré" reconstruction appears at the substrate, giving rise to the appearance of pinning-points. We show that these points are responsible for the development of the superstructure, while charge from the Pt substrate is injected into the graphene, inducing a local n-doping, mostly localized at these specific pinning-point positions.
过渡金属表面外延石墨烯莫尔条纹电子掺杂的内在原子机制仍是一个悬而未决的问题。为了更好地理解这一过程,我们对在Gr/Pt(111)体系上观察到的最具代表性的莫尔超结构进行了第一性原理全面表征,并将结果与原子分辨扫描隧道显微镜实验进行了对比。我们发现,对于所有报道的莫尔条纹,该体系都会弛豫,在石墨烯和最外层铂层均会产生不可忽略的原子起伏。有趣的是,在衬底上出现了镜像“反莫尔”重构,产生了钉扎点。我们表明,这些点是超结构形成的原因,而来自Pt衬底的电荷注入到石墨烯中,诱导了局部n型掺杂,主要集中在这些特定的钉扎点位置。