Suppr超能文献

肠道微生物群在脂质代谢中的作用不断扩展。

Expanding role of gut microbiota in lipid metabolism.

作者信息

Ghazalpour Anatole, Cespedes Ivana, Bennett Brian J, Allayee Hooman

机构信息

aDepartment of Human Genetics, David Geffen School of Medicine of UCLA bDepartment of Preventive Medicine, Keck School of Medicine, University of Southern California cInstitute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California dDepartments of Genetics eNutrition fNutrition Research Institute, University of North Carolina, Chapel Hill, North Carolina, USA.

出版信息

Curr Opin Lipidol. 2016 Apr;27(2):141-7. doi: 10.1097/MOL.0000000000000278.

Abstract

PURPOSE OF REVIEW

This article highlights recent advances in the emerging role that gut microbiota play in modulating metabolic phenotypes, with a particular focus on lipid metabolism.

RECENT FINDINGS

Accumulating data from both human and animal studies demonstrate that intestinal microbes can affect host lipid metabolism through multiple direct and indirect biological mechanisms. These include a variety of signaling molecules produced by gut bacteria that have potent effects on hepatic lipid and bile metabolism and on reverse cholesterol transport, energy expenditure, and insulin sensitivity in peripheral tissues. Additionally, host genetic factors can modulate the abundance of bacterial taxa, which can subsequently affect various metabolic phenotypes. Proof of causality for identified microbial associations with host lipid-related phenotypes has been demonstrated in several animal studies, but remains a challenge in humans. Ultimately, selective manipulation of the gut microbial ecosystem for intervention will first require a better understanding of which specific bacteria, or alternatively, which bacterial metabolites, are appropriate targets.

SUMMARY

Recent discoveries have broad implications for elucidating bacterially mediated pathophysiological mechanisms that alter lipid metabolism and other related metabolic traits. From a clinical perspective, this newly recognized endocrine organ system can be targeted for therapeutic benefit of dyslipidemia and cardiometabolic diseases.

摘要

综述目的

本文重点介绍肠道微生物群在调节代谢表型方面新出现的作用的最新进展,尤其关注脂质代谢。

最新发现

来自人类和动物研究的越来越多的数据表明,肠道微生物可通过多种直接和间接生物学机制影响宿主脂质代谢。这些机制包括肠道细菌产生的多种信号分子,它们对肝脏脂质和胆汁代谢、逆向胆固醇转运、能量消耗以及外周组织中的胰岛素敏感性具有强大影响。此外,宿主遗传因素可调节细菌类群的丰度,进而影响各种代谢表型。在多项动物研究中已证实已确定的微生物与宿主脂质相关表型之间因果关系的证据,但在人类中仍是一项挑战。最终,为进行干预而对肠道微生物生态系统进行选择性操纵首先需要更好地了解哪些特定细菌或哪些细菌代谢物是合适的靶点。

总结

最近的发现对于阐明改变脂质代谢和其他相关代谢特征的细菌介导的病理生理机制具有广泛意义。从临床角度来看,这个新认识的内分泌器官系统可作为血脂异常和心脏代谢疾病治疗益处的靶点。

相似文献

1
Expanding role of gut microbiota in lipid metabolism.
Curr Opin Lipidol. 2016 Apr;27(2):141-7. doi: 10.1097/MOL.0000000000000278.
2
Microbiota and HDL metabolism.
Curr Opin Lipidol. 2018 Feb;29(1):18-23. doi: 10.1097/MOL.0000000000000472.
3
The intestinal microbiome associated with lipid metabolism and obesity in humans and animals.
J Appl Microbiol. 2022 Nov;133(5):2915-2930. doi: 10.1111/jam.15740. Epub 2022 Aug 8.
4
A review of metabolic potential of human gut microbiome in human nutrition.
Arch Microbiol. 2018 Mar;200(2):203-217. doi: 10.1007/s00203-017-1459-x. Epub 2017 Nov 29.
5
The human gut microbiota: Metabolism and perspective in obesity.
Gut Microbes. 2018 Jul 4;9(4):308-325. doi: 10.1080/19490976.2018.1465157. Epub 2018 May 24.
6
[Advances in host-microbe metabolic axis].
Wei Sheng Wu Xue Bao. 2017 Feb 4;57(2):161-9.
7
Role of the microbiome in energy regulation and metabolism.
Gastroenterology. 2014 May;146(6):1525-33. doi: 10.1053/j.gastro.2014.02.008. Epub 2014 Feb 19.
8
The gut microbiota, obesity and insulin resistance.
Mol Aspects Med. 2013 Feb;34(1):39-58. doi: 10.1016/j.mam.2012.11.001. Epub 2012 Nov 16.
10
Gut Microbiome and Obesity: A Plausible Explanation for Obesity.
Curr Obes Rep. 2015 Jun;4(2):250-61. doi: 10.1007/s13679-015-0152-0.

引用本文的文献

1
Metagenomic profiling of gut microbime: associating their role with the advancement of diabetic nephropathy.
Antonie Van Leeuwenhoek. 2025 Aug 22;118(9):135. doi: 10.1007/s10482-025-02141-5.
2
Alterations in the Gut Microbiota and Metabolite Profiles of Lung Cancer Patients.
Curr Microbiol. 2025 Aug 1;82(9):428. doi: 10.1007/s00284-025-04362-3.
3
Comparison of Efavirenz and Dolutegravir on Gut Microbiome and Gut Barrier Functions.
ACS Omega. 2025 May 30;10(22):23099-23110. doi: 10.1021/acsomega.5c01210. eCollection 2025 Jun 10.
6
Exploring the mediating role of blood metabolites in the relationship between gut microbiota and gastric cancer risk: a Mendelian randomization study.
Front Cell Infect Microbiol. 2025 Jan 7;14:1453286. doi: 10.3389/fcimb.2024.1453286. eCollection 2024.
8
From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management.
Front Cell Infect Microbiol. 2024 Sep 25;14:1416739. doi: 10.3389/fcimb.2024.1416739. eCollection 2024.
10
Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review).
Exp Ther Med. 2024 Sep 11;28(5):427. doi: 10.3892/etm.2024.12716. eCollection 2024 Nov.

本文引用的文献

2
The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids.
Circ Res. 2015 Oct 9;117(9):817-24. doi: 10.1161/CIRCRESAHA.115.306807. Epub 2015 Sep 10.
3
Genetic and environmental control of host-gut microbiota interactions.
Genome Res. 2015 Oct;25(10):1558-69. doi: 10.1101/gr.194118.115. Epub 2015 Aug 10.
4
The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance.
Cell Rep. 2015 Jan 20;10(3):326-338. doi: 10.1016/j.celrep.2014.12.036. Epub 2015 Jan 15.
5
Transmission of atherosclerosis susceptibility with gut microbial transplantation.
J Biol Chem. 2015 Feb 27;290(9):5647-60. doi: 10.1074/jbc.M114.618249. Epub 2014 Dec 30.
6
Antibiotics in early life and obesity.
Nat Rev Endocrinol. 2015 Mar;11(3):182-90. doi: 10.1038/nrendo.2014.210. Epub 2014 Dec 9.
7
Human genetics shape the gut microbiome.
Cell. 2014 Nov 6;159(4):789-99. doi: 10.1016/j.cell.2014.09.053.
8
Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.
J Lipid Res. 2015 Jan;56(1):22-37. doi: 10.1194/jlr.M051680. Epub 2014 Nov 6.
9
Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine.
Arterioscler Thromb Vasc Biol. 2014 Jun;34(6):1307-13. doi: 10.1161/ATVBAHA.114.303252. Epub 2014 Mar 27.
10
FXR is a molecular target for the effects of vertical sleeve gastrectomy.
Nature. 2014 May 8;509(7499):183-8. doi: 10.1038/nature13135. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验