利用计算机视觉从悬浮液中自动分离单细胞。
Automated single cell isolation from suspension with computer vision.
作者信息
Ungai-Salánki Rita, Gerecsei Tamás, Fürjes Péter, Orgovan Norbert, Sándor Noémi, Holczer Eszter, Horvath Robert, Szabó Bálint
机构信息
Doctoral School of Molecular- and Nanotechnologies, University of Pannonia, Veszprém, Hungary.
Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hung. Acad. Sci., Budapest, Hungary.
出版信息
Sci Rep. 2016 Feb 9;6:20375. doi: 10.1038/srep20375.
Current robots can manipulate only surface-attached cells seriously limiting the fields of their application for single cell handling. We developed a computer vision-based robot applying a motorized microscope and micropipette to recognize and gently isolate intact individual cells for subsequent analysis, e.g., DNA/RNA sequencing in 1-2 nanoliters from a thin (~100 μm) layer of cell suspension. It can retrieve rare cells, needs minimal sample preparation, and can be applied for virtually any tissue cell type. Combination of 1 μm positioning precision, adaptive cell targeting and below 1 nl liquid handling precision resulted in an unprecedented accuracy and efficiency in robotic single cell isolation. Single cells were injected either into the wells of a miniature plate with a sorting speed of 3 cells/min or into standard PCR tubes with 2 cells/min. We could isolate labeled cells also from dense cultures containing ~1,000 times more unlabeled cells by the successive application of the sorting process. We compared the efficiency of our method to that of single cell entrapment in microwells and subsequent sorting with the automated micropipette: the recovery rate of single cells was greatly improved.
目前的机器人只能操纵附着在表面的细胞,这严重限制了它们在单细胞处理方面的应用领域。我们开发了一种基于计算机视觉的机器人,它配备了电动显微镜和微量移液器,用于识别并轻柔地分离完整的单个细胞,以便进行后续分析,例如从薄薄的(约100μm)细胞悬液层中获取1-2纳升的DNA/RNA进行测序。它能够获取稀有细胞,所需的样品制备极少,并且几乎可应用于任何组织细胞类型。1μm的定位精度、自适应细胞靶向以及低于1nl的液体处理精度相结合,使得机器人单细胞分离的准确性和效率达到了前所未有的高度。单个细胞被注入微型板的孔中,分选速度为每分钟3个细胞,或者注入标准PCR管中,速度为每分钟2个细胞。通过连续应用分选过程,我们还能够从含有比未标记细胞多约1000倍的密集培养物中分离出标记细胞。我们将我们的方法与单细胞捕获在微孔中并随后用自动微量移液器进行分选的方法的效率进行了比较:单细胞的回收率得到了极大提高。
相似文献
Sci Rep. 2013-1-18
IEEE Trans Biomed Eng. 2012-1-3
Proc Natl Acad Sci U S A. 2005-11-1
IEEE Trans Biomed Eng. 2017-5
Electrophoresis. 2019-6-26
Lab Chip. 2011-6-9
引用本文的文献
Trends Analyt Chem. 2023-12
Appl Environ Microbiol. 2022-2-8
Sci Rep. 2020-4-20
Genes (Basel). 2019-12-5
Micromachines (Basel). 2019-8-27
本文引用的文献
Sci Rep. 2013-2-1
Sci Rep. 2013-1-18
Lab Chip. 2012-2-9
Nature. 2011-3-13
BMC Genomics. 2011-3-9
Nat Protoc. 2010-2-18