Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Sci Rep. 2022 Jan 19;12(1):963. doi: 10.1038/s41598-022-05007-2.
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells' properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.
生物医学研究依赖于使用分子生物标志物和分选方法(如荧光激活细胞分选或磁性激活细胞分选)来识别和分离特定的细胞类型。标记过程可能会改变细胞的特性,因此应尽量避免,特别是在为临床应用纯化细胞时。一种有前途的替代方法是基于物理特性对细胞进行无标记识别。无标记实时变形细胞分选(soRT-DC)是一种用于无标记分析和单细胞分选的微流控技术。在 soRT-FDC 中,通过深度神经网络(DNN)对细胞的明场图像进行分析以做出分选决策,但迄今为止,该技术仅在具有明显形态差异且自然处于悬浮状态的血细胞上进行了演示。然而,大多数细胞在组织中生长,在进行细胞分选之前需要进行解离,这会带来一些挑战,包括形态变化或存在聚集物。在这里,我们介绍了一些方法,可提高从神经组织中单细胞的分析和分选的稳健性,并提供了可以区分视觉相似细胞的 DNN。我们使用 DNN 进行基于图像的分选,以从分离的视网膜中富集光感受器细胞,然后将其移植到小鼠眼中。