Suppr超能文献

低剂量阿莫西林对金黄色葡萄球菌USA300生物被膜的影响。

Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

作者信息

Mlynek Kevin D, Callahan Mary T, Shimkevitch Anton V, Farmer Jackson T, Endres Jennifer L, Marchand Mélodie, Bayles Kenneth W, Horswill Alexander R, Kaplan Jeffrey B

机构信息

Department of Biology, American University, Washington, DC, USA.

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

Antimicrob Agents Chemother. 2016 Apr 22;60(5):2639-51. doi: 10.1128/AAC.02070-15. Print 2016 May.

Abstract

Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation.

摘要

先前的研究表明,β-内酰胺类抗生素的亚抑菌浓度水平会刺激大多数耐甲氧西林金黄色葡萄球菌(MRSA)菌株形成生物膜。在此,我们通过测量亚抑菌浓度的阿莫西林对流行的社区相关MRSA菌株USA300形成生物膜的影响来研究这一过程。我们发现,亚抑菌浓度的阿莫西林提高了USA300细胞在静态和流动条件下附着于表面并形成生物膜的能力。我们还发现,在亚抑菌浓度阿莫西林中培养的USA300生物膜更厚,包含更多的柱状和通道结构,并且比未用抗生素培养的生物膜孔隙更少。在亚抑菌浓度阿莫西林中生物膜的形成与细胞外DNA(eDNA)的产生相关。然而,仅由阿莫西林诱导的细胞裂解释放的eDNA显然不足以刺激生物膜形成。另外两种具有不同作用机制的细胞壁活性剂——d-环丝氨酸和磷霉素的亚抑菌浓度水平也刺激了依赖eDNA的生物膜形成,这表明生物膜的形成可能是对细胞壁应激的一种机制性适应。筛选USA300水手转座子文库以寻找在亚抑菌浓度阿莫西林中生物膜形成缺陷的突变体,鉴定出许多已知的金黄色葡萄球菌β-内酰胺抗性和生物膜形成的介质,以及先前与这些表型无关的新基因。我们的结果将MRSA中的细胞壁应激与生物膜形成联系起来,并表明USA300菌株在低剂量阿莫西林中依赖eDNA的生物膜形成是一种可诱导的表型,可用于鉴定影响MRSAβ-内酰胺抗性和生物膜形成的新基因。

相似文献

1
Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.
Antimicrob Agents Chemother. 2016 Apr 22;60(5):2639-51. doi: 10.1128/AAC.02070-15. Print 2016 May.
3
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
mSphere. 2024 May 29;9(5):e0012624. doi: 10.1128/msphere.00126-24. Epub 2024 May 2.
4
Subinhibitory Concentrations of Mupirocin Stimulate Staphylococcus aureus Biofilm Formation by Upregulating .
Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01912-19.
5
Mupirocin at Subinhibitory Concentrations Induces Biofilm Formation in Staphylococcus aureus.
Microb Drug Resist. 2018 Nov;24(9):1249-1258. doi: 10.1089/mdr.2017.0290. Epub 2018 Mar 14.
6
Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections.
BMC Microbiol. 2016 Jun 23;16(1):119. doi: 10.1186/s12866-016-0737-0.
7
Effects of Subinhibitory Concentrations of Ceftaroline on Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms.
PLoS One. 2016 Jan 22;11(1):e0147569. doi: 10.1371/journal.pone.0147569. eCollection 2016.
8
In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone.
J Glob Antimicrob Resist. 2021 Mar;24:63-71. doi: 10.1016/j.jgar.2020.11.026. Epub 2020 Dec 8.
10
Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin.
Microb Pathog. 2013 Aug-Sep;61-62:66-72. doi: 10.1016/j.micpath.2013.05.002. Epub 2013 May 25.

引用本文的文献

1
Sub-inhibitory concentrations of fosfomycin enhance biofilm formation by a -dependent mechanism.
Microbiol Spectr. 2025 Sep 2;13(9):e0152125. doi: 10.1128/spectrum.01521-25. Epub 2025 Jul 21.
3
Beyond the double helix: the multifaceted landscape of extracellular DNA in biofilms.
Front Cell Infect Microbiol. 2024 Jun 5;14:1400648. doi: 10.3389/fcimb.2024.1400648. eCollection 2024.
4
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
mSphere. 2024 May 29;9(5):e0012624. doi: 10.1128/msphere.00126-24. Epub 2024 May 2.
7
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
bioRxiv. 2023 Nov 5:2023.11.05.565664. doi: 10.1101/2023.11.05.565664.
8
Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics.
PLoS Genet. 2023 Nov 2;19(11):e1011013. doi: 10.1371/journal.pgen.1011013. eCollection 2023 Nov.
9
National variation in prophylactic antibiotic use for elective primary total joint replacement.
Bone Jt Open. 2023 Oct 6;4(10):742-749. doi: 10.1302/2633-1462.410.BJO-2023-0055.R1.
10
Sub-MIC streptomycin and tetracycline enhanced Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics.
Biofilm. 2023 Sep 20;6:100156. doi: 10.1016/j.bioflm.2023.100156. eCollection 2023 Dec 15.

本文引用的文献

1
Mechanisms of Methicillin Resistance in Staphylococcus aureus.
Annu Rev Biochem. 2015;84:577-601. doi: 10.1146/annurev-biochem-060614-034516.
2
Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation.
Microbiologyopen. 2015 Jun;4(3):436-51. doi: 10.1002/mbo3.250. Epub 2015 Mar 21.
3
Methicillin resistance and the biofilm phenotype in Staphylococcus aureus.
Front Cell Infect Microbiol. 2015 Jan 28;5:1. doi: 10.3389/fcimb.2015.00001. eCollection 2015.
4
Extracellular DNA as a target for biofilm control.
Curr Opin Biotechnol. 2015 Jun;33:73-80. doi: 10.1016/j.copbio.2014.12.002. Epub 2014 Dec 18.
6
A central role for carbon-overflow pathways in the modulation of bacterial cell death.
PLoS Pathog. 2014 Jun 19;10(6):e1004205. doi: 10.1371/journal.ppat.1004205. eCollection 2014 Jun.
7
Biofilms as a mechanism of bacterial resistance.
Drug Discov Today Technol. 2014 Mar;11:49-56. doi: 10.1016/j.ddtec.2014.02.003.
8
Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease.
PLoS One. 2014 Apr 21;9(4):e95574. doi: 10.1371/journal.pone.0095574. eCollection 2014.
9
Induction of MRSA Biofilm by Low-Dose β-Lactam Antibiotics: Specificity, Prevalence and Dose-Response Effects.
Dose Response. 2013 Jul 25;12(1):152-61. doi: 10.2203/dose-response.13-021.Kaplan. eCollection 2014 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验