Suppr超能文献

基于微流控技术的药物发现筛选应用。

Screening applications in drug discovery based on microfluidic technology.

作者信息

Eribol P, Uguz A K, Ulgen K O

机构信息

Department of Chemical Engineering, Boğaziçi University , 34342 Bebek, Istanbul, Turkey.

出版信息

Biomicrofluidics. 2016 Jan 28;10(1):011502. doi: 10.1063/1.4940886. eCollection 2016 Jan.

Abstract

Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

摘要

在过去二十年里,微流控技术因其具有诸多优势而备受关注,比如化学试剂消耗低、分析时间缩短、高通量、对质量和热传递的更好控制、将台式实验室缩小至芯片(即芯片实验室)以及它所具备的许多其他优势。微流控技术很快就在制药行业得到了应用,制药行业需要借助前沿的科技突破开展工作,因为药物筛选和商业化过程漫长且成本高昂,而且由于结果不可预测还需要进行大量测试。这篇综述论文围绕采用微流控技术的候选药物筛选方法展开,特别聚焦于微芯片的制造技术和材料、连续或离散等流动类型及其优势、动力学参数的测定以及与传统系统的比较、毒性和细胞毒性评估、高通量浓度生成以及所采用的计算方法。这篇综述的一个重要结论是,尽管微流控技术在该领域已经应用了约20年,但仍有研发空间,因为这项前沿技术需要创造性思维来为每个具体案例进行设计并找到解决方案。这些微系统的最新扩展是微工程化的芯片上器官和器官阵列。

相似文献

1
Screening applications in drug discovery based on microfluidic technology.
Biomicrofluidics. 2016 Jan 28;10(1):011502. doi: 10.1063/1.4940886. eCollection 2016 Jan.
2
Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and -Based Innovations.
Biosensors (Basel). 2024 Jan 21;14(1):55. doi: 10.3390/bios14010055.
4
[Applications of microfluidic paper-based chips in environmental analysis and detection].
Se Pu. 2021 Aug;39(8):802-815. doi: 10.3724/SP.J.1123.2020.09004.
5
Microfluidic cell chips for high-throughput drug screening.
Bioanalysis. 2016 May;8(9):921-37. doi: 10.4155/bio-2016-0028. Epub 2016 Apr 13.
6
Application of microfluidic chips in anticancer drug screening.
Bosn J Basic Med Sci. 2022 Jun 1;22(3):302-314. doi: 10.17305/bjbms.2021.6484.
7
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
8
Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
Int J Pharm. 2020 Jun 30;584:119408. doi: 10.1016/j.ijpharm.2020.119408. Epub 2020 May 12.
9
Advances in microfluidics for drug discovery.
Expert Opin Drug Discov. 2010 Nov;5(11):1081-94. doi: 10.1517/17460441.2010.521149. Epub 2010 Oct 5.
10
The latest advances in high content screening in microfluidic devices.
Expert Opin Drug Discov. 2023 Jul;18(7):781-795. doi: 10.1080/17460441.2023.2216013. Epub 2023 May 23.

引用本文的文献

1
Fully Automated Characterization of Protein-Peptide Binding by Microfluidic 2D NMR.
J Am Chem Soc. 2023 Feb 8;145(5):3204-3210. doi: 10.1021/jacs.2c13052. Epub 2023 Jan 30.
2
Microfluidics - The State-of-the-Art Technology for Pharmaceutical Application.
Adv Pharm Bull. 2022 Aug;12(4):700-711. doi: 10.34172/apb.2022.073. Epub 2021 Sep 29.
4
Towards a mechanistic understanding of reciprocal drug-microbiome interactions.
Mol Syst Biol. 2021 Mar;17(3):e10116. doi: 10.15252/msb.202010116.
5
Co-Clinical Trials: An Innovative Drug Development Platform for Cholangiocarcinoma.
Pharmaceuticals (Basel). 2021 Jan 11;14(1):51. doi: 10.3390/ph14010051.
8
The Medicinal Chemistry in the Era of Machines and Automation: Recent Advances in Continuous Flow Technology.
J Med Chem. 2020 Jul 9;63(13):6624-6647. doi: 10.1021/acs.jmedchem.9b01956. Epub 2020 Feb 21.
9
Recent advances in microfluidics for drug screening.
Biomicrofluidics. 2019 Nov 18;13(6):061503. doi: 10.1063/1.5121200. eCollection 2019 Nov.
10
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms.
Mar Drugs. 2018 Jul 23;16(7):244. doi: 10.3390/md16070244.

本文引用的文献

1
Microfluidic flow-free generation of chemical concentration gradients.
Sens Actuators B Chem. 2014 Jan;190:334-341. doi: 10.1016/j.snb.2013.08.073. Epub 2013 Sep 3.
2
Microdroplet photobioreactor for the photoautotrophic culture of microalgal cells.
Analyst. 2016 Feb 7;141(3):989-98. doi: 10.1039/c5an02211h. Epub 2015 Dec 17.
3
Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration.
CPT Pharmacometrics Syst Pharmacol. 2015 Oct;4(10):585-94. doi: 10.1002/psp4.12010. Epub 2015 Oct 5.
4
Artefacts at the liquid interface and their impact in miniaturized biochemical assay.
Biomicrofluidics. 2015 Jul 21;9(5):052607. doi: 10.1063/1.4927324. eCollection 2015 Sep.
5
Microfluidic Chip-Based Online Screening Coupled to Mass Spectrometry: Identification of Inhibitors of Thrombin and Factor Xa.
J Biomol Screen. 2016 Feb;21(2):212-20. doi: 10.1177/1087057115602648. Epub 2015 Aug 31.
6
Microfluidics: reframing biological enquiry.
Nat Rev Mol Cell Biol. 2015 Sep;16(9):554-67. doi: 10.1038/nrm4041.
7
Automatic 3D Cell Analysis in High-Throughput Microarray Using Micropillar and Microwell Chips.
J Biomol Screen. 2015 Oct;20(9):1178-84. doi: 10.1177/1087057115597635. Epub 2015 Aug 3.
8
Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of liver technologies.
Technology (Singap World Sci). 2015 Mar;3(1):1-26. doi: 10.1142/S2339547815300012.
9
Long-term maintenance of a microfluidic 3D human liver sinusoid.
Biotechnol Bioeng. 2016 Jan;113(1):241-6. doi: 10.1002/bit.25700. Epub 2015 Aug 26.
10
Organs-on-chips at the frontiers of drug discovery.
Nat Rev Drug Discov. 2015 Apr;14(4):248-60. doi: 10.1038/nrd4539. Epub 2015 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验