Srinivasan P
Department of Electrical and Computer Engineering, University of California , Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California , Santa Barbara, California 93106, USA.
Appl Phys Lett. 2016 Jan 18;108(3):033702. doi: 10.1063/1.4940388. Epub 2016 Jan 21.
Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in . Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.
能够在纳米长度尺度上实现精确空间定位并进行精细控制的生物分子实验平台,是研究膜结合信号传导分子机制的宝贵工具。利用分层结构的微加工薄膜金(Au),可以在其中添加光学和生化功能。为了实现这一目标,在此我展示了互补DNA连接的巨型磷脂体在金表面的对接可以创建膜限制的纳米域。这些纳米域是剖析膜信号复合物分子编排的关键特征。金的激发表面等离子体共振模式允许对稳定对接的DNA连接的磷脂体和脂质 - 去污剂双分子层结构进行无标记成像,成像分辨率受衍射限制。这种多功能构建块除了作为纳米级成像的光学工具外,还能够实现严格控制的设置来模拟膜锚定的生物信号传导。