Khobragade P, Jain A, Setlur Nagesh S V, Andreana S, Dziak R, Sunkara S K, Sunkara S, Bednarek D R, Rudin S, Ionita C N
Department of Biomedical Engineering, State University of New York at Buffalo; Toshiba Stroke and Vascular Research Center, State University of New York at Buffalo.
Toshiba Stroke and Vascular Research Center, State University of New York at Buffalo.
Proc SPIE Int Soc Opt Eng. 2015 Mar 17;9417. doi: 10.1117/12.2082173. Epub 2015 Feb 21.
High-resolution 3D bone-tissue structure measurements may provide information critical to the understanding of the bone regeneration processes and to the bone strength assessment. Tissue engineering studies rely on such nondestructive measurements to monitor bone graft regeneration area. In this study, we measured bone yield, fractal dimension and trabecular thickness through micro-CT slices for different grafts and controls. Eight canines underwent surgery to remove a bone volume (defect) in the canine's jaw at a total of 44 different locations. We kept 11 defects empty for control and filled the remaining ones with three regenerative materials; NanoGen (NG), a FDA-approved material (n=11), a novel NanoCalcium Sulfate (NCS) material (n=11) and NCS alginate (NCS+alg) material (n=11). After a minimum of four and eight weeks, the canines were sacrificed and the jaw samples were extracted. We used a custom-built micro-CT system to acquire the data volume and developed software to measure the bone yield, fractal dimension and trabecular thickness. The software used a segmentation algorithm based on histograms derived from volumes of interest indicated by the operator. Using bone yield and fractal dimension as indices we are able to differentiate between the control and regenerative material (p<0.005). Regenerative material NCS showed an average 63.15% bone yield improvement over the control sample, NCS+alg showed 55.55% and NanoGen showed 37.5%. The bone regeneration process and quality of bone were dependent upon the position of defect and time period of healing. This study presents one of the first quantitative comparisons using non-destructive Micro-CT analysis for bone regenerative material in a large animal with a critical defect model. Our results indicate that Micro-CT measurement could be used to monitor in-vivo bone regeneration studies for greater regenerative process understanding.
高分辨率三维骨组织结构测量可为理解骨再生过程及评估骨强度提供关键信息。组织工程研究依赖此类无损测量来监测骨移植再生区域。在本研究中,我们通过显微CT切片测量了不同移植物和对照组的骨产量、分形维数和小梁厚度。八只犬接受手术,在其颌骨的44个不同位置去除一定骨量(缺损)。我们将11个缺损留空作为对照,其余缺损用三种再生材料填充;纳米基因(NG),一种经美国食品药品监督管理局批准的材料(n = 11),一种新型纳米硫酸钙(NCS)材料(n = 11)和NCS藻酸盐(NCS + alg)材料(n = 11)。至少四周和八周后,处死犬并取出颌骨样本。我们使用定制的显微CT系统获取数据体,并开发软件来测量骨产量、分形维数和小梁厚度。该软件使用基于操作员指定的感兴趣体积导出的直方图的分割算法。以骨产量和分形维数为指标,我们能够区分对照组和再生材料(p < 0.005)。再生材料NCS相对于对照样本的骨产量平均提高了63.15%,NCS + alg提高了55.55%,纳米基因提高了37.5%。骨再生过程和骨质量取决于缺损位置和愈合时间段。本研究首次在大型动物的关键缺损模型中,对骨再生材料进行了基于无损显微CT分析的定量比较之一。我们的结果表明,显微CT测量可用于监测体内骨再生研究,以更好地理解再生过程。