Suppr超能文献

通过生物信息学分析鉴定甲状腺乳头状癌的潜在治疗靶点

Identification of potential therapeutic targets for papillary thyroid carcinoma by bioinformatics analysis.

作者信息

Zhao Ming, Wang Ke-Jing, Tan Zhuo, Zheng Chuan-Ming, Liang Zhong, Zhao Jian-Qiang

机构信息

Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.

出版信息

Oncol Lett. 2016 Jan;11(1):51-58. doi: 10.3892/ol.2015.3829. Epub 2015 Oct 26.

Abstract

The aim of the present study was to identify potential therapeutic targets for papillary thyroid carcinoma (PTC) and to investigate the possible mechanism underlying this disease. The gene expression profile, GSE53157, was downloaded from the Gene Expression Omnibus database. Only 10 chips, including 3 specimens of normal thyroid tissues and 7 specimens of well-differentiated thyroid carcinomas, were analyzed in the present study. Differentially-expressed genes (DEGs) between PTC patients and normal individuals were identified. Next, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs were performed. Modules in the protein-protein interaction (PPI) network were identified. Significant target genes were selected from the microRNA (miRNA) regulatory network. Furthermore, the integrated network was constructed with the miRNA regulatory and PPI network modules, and key target genes were screened. A total of 668 DEGs were identified. Modules M1, M2 and M3 were identified from the PPI network. From the modules, DEGs of cyclin-dependent kinase inhibitor 1A, S100 calcium binding protein A6 (S100A6), dual specificity phosphatase 5, keratin 19, met proto-oncogene (MET) and lectin galactoside-binding soluble 3 were included in the Malacards database. In the miRNA regulatory and integrated networks, genes of cyclin-dependent kinase inhibitor 1C (CDKN1C), peroxisome proliferator-activated receptor γ, aryl hydrocarbon receptor, basic helix-loop-helix family, member e40 and reticulon 1 were the key target genes. S100A6, MET and CDKN1C may exhibit key roles in the progression and development of PTC, and may be used as specific therapeutic targets in the treatment of PTC. However, further experiments are required to confirm these results.

摘要

本研究的目的是确定甲状腺乳头状癌(PTC)的潜在治疗靶点,并探究该疾病的潜在机制。基因表达谱GSE53157从基因表达综合数据库下载。本研究仅分析了10个芯片,包括3个正常甲状腺组织样本和7个高分化甲状腺癌样本。确定了PTC患者与正常个体之间的差异表达基因(DEGs)。接下来,对DEGs进行了基因本体论和京都基因与基因组百科全书通路分析。确定了蛋白质-蛋白质相互作用(PPI)网络中的模块。从微小RNA(miRNA)调控网络中选择了重要的靶基因。此外,用miRNA调控和PPI网络模块构建了整合网络,并筛选了关键靶基因。共鉴定出668个DEGs。从PPI网络中确定了模块M1、M2和M3。在这些模块中,细胞周期蛋白依赖性激酶抑制剂1A、S100钙结合蛋白A6(S100A6)、双特异性磷酸酶5、角蛋白19、原癌基因(MET)和半乳糖凝集素可溶性3的DEGs被纳入Malacards数据库。在miRNA调控和整合网络中,细胞周期蛋白依赖性激酶抑制剂1C(CDKN1C)、过氧化物酶体增殖物激活受体γ、芳烃受体、碱性螺旋-环-螺旋家族成员e40和网织蛋白1的基因是关键靶基因。S100A6、MET和CDKN1C可能在PTC的进展和发展中发挥关键作用,并可能作为PTC治疗的特异性治疗靶点。然而,需要进一步的实验来证实这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d334/4726925/ebb24ba2b675/ol-11-01-0051-g00.jpg

相似文献

1
Identification of potential therapeutic targets for papillary thyroid carcinoma by bioinformatics analysis.
Oncol Lett. 2016 Jan;11(1):51-58. doi: 10.3892/ol.2015.3829. Epub 2015 Oct 26.
2
Differential expression of a set of microRNA genes reveals the potential mechanism of papillary thyroid carcinoma.
Ann Endocrinol (Paris). 2019 Apr;80(2):77-83. doi: 10.1016/j.ando.2018.07.014. Epub 2018 Oct 13.
3
Key genes and pathways predicted in papillary thyroid carcinoma based on bioinformatics analysis.
J Endocrinol Invest. 2016 Nov;39(11):1285-1293. doi: 10.1007/s40618-016-0491-z. Epub 2016 Jun 1.
6
Bioinformatics analysis to screen key genes in papillary thyroid carcinoma.
Oncol Lett. 2020 Jan;19(1):195-204. doi: 10.3892/ol.2019.11100. Epub 2019 Nov 14.
8
Identification of key genes and microRNAs involved in kidney Wilms tumor by integrated bioinformatics analysis.
Exp Ther Med. 2019 Oct;18(4):2554-2564. doi: 10.3892/etm.2019.7870. Epub 2019 Aug 8.
10
Identification and analysis of genes associated with papillary thyroid carcinoma by bioinformatics methods.
Biosci Rep. 2019 Apr 2;39(4). doi: 10.1042/BSR20190083. Print 2019 Apr 30.

引用本文的文献

1
S100 proteins in head and neck squamous cell carcinoma (Review).
Oncol Lett. 2023 Jul 6;26(2):362. doi: 10.3892/ol.2023.13948. eCollection 2023 Aug.
2
Reprotoxic Effect of Tris(2,3-Dibromopropyl) Isocyanurate (TBC) on Spermatogenic Cells In Vitro.
Molecules. 2023 Mar 3;28(5):2337. doi: 10.3390/molecules28052337.
3
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review.
Int J Mol Sci. 2022 Dec 23;24(1):266. doi: 10.3390/ijms24010266.
5
LncRNA NORAD promotes thyroid carcinoma progression through targeting miR-202-5p.
Am J Transl Res. 2019 Jan 15;11(1):290-299. eCollection 2019.
6
Genetic expression profile-based screening of genes and pathways associated with papillary thyroid carcinoma.
Oncol Lett. 2018 Nov;16(5):5723-5732. doi: 10.3892/ol.2018.9342. Epub 2018 Aug 21.
7
S100A6 protein: functional roles.
Cell Mol Life Sci. 2017 Aug;74(15):2749-2760. doi: 10.1007/s00018-017-2526-9. Epub 2017 Apr 17.
8
MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.
Nucleic Acids Res. 2017 Jan 4;45(D1):D877-D887. doi: 10.1093/nar/gkw1012. Epub 2016 Nov 28.

本文引用的文献

1
Recurrence of papillary thyroid cancer after optimized surgery.
Gland Surg. 2015 Feb;4(1):52-62. doi: 10.3978/j.issn.2227-684X.2014.12.06.
3
Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma.
Molecules. 2014 Aug 5;19(8):11586-99. doi: 10.3390/molecules190811586.
4
MicroRNA-21 regulates biological behaviors in papillary thyroid carcinoma by targeting programmed cell death 4.
J Surg Res. 2014 Jun 1;189(1):68-74. doi: 10.1016/j.jss.2014.02.012. Epub 2014 Feb 15.
5
Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas.
J Clin Endocrinol Metab. 2014 Mar;99(3):E497-507. doi: 10.1210/jc.2013-1512. Epub 2014 Jan 13.
6
Increased expression of S100A6 promotes cell proliferation and migration in human hepatocellular carcinoma.
J Mol Med (Berl). 2014 Mar;92(3):291-303. doi: 10.1007/s00109-013-1104-3. Epub 2013 Nov 27.
7
MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214.
PLoS One. 2013 Oct 22;8(10):e76994. doi: 10.1371/journal.pone.0076994. eCollection 2013.
8
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83. doi: 10.1093/nar/gkt439. Epub 2013 May 23.
9
MalaCards: an integrated compendium for diseases and their annotation.
Database (Oxford). 2013 Apr 12;2013:bat018. doi: 10.1093/database/bat018. Print 2013.
10
PDCD4 expression in thyroid neoplasia.
Virchows Arch. 2013 Jan;462(1):95-100. doi: 10.1007/s00428-012-1352-6. Epub 2012 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验