Suppr超能文献

广义反应-扩散主方程的反应速率。

Reaction rates for a generalized reaction-diffusion master equation.

机构信息

Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California 93106-5070, USA.

出版信息

Phys Rev E. 2016 Jan;93(1):013307. doi: 10.1103/PhysRevE.93.013307. Epub 2016 Jan 19.

Abstract

It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

摘要

已经确定,反应-扩散主方程的准确性存在固有限制。具体来说,存在一个基本的网格尺寸下限,低于该下限,随着网格进一步细化,准确性会恶化。在本文中,我们将标准的反应-扩散主方程扩展到允许占据相邻体素的分子进行反应,与传统方法不同,传统方法仅当分子占据相同体素时才会反应。我们推导出二维和三维的反应速率,以获得与更精细的 Smoluchowski 模型的最佳匹配,并通过两个数值示例表明,扩展算法对于广泛的网格尺寸都是准确的,允许我们模拟使用标准反应-扩散主方程难以处理的系统。此外,我们还表明,对于高于标准算法基本下限的网格尺寸,广义算法会简化为标准算法。我们推导出广义算法的下限,在二维和三维中,该下限的量级与一对反应分子的反应半径相当。

相似文献

1
Reaction rates for a generalized reaction-diffusion master equation.
Phys Rev E. 2016 Jan;93(1):013307. doi: 10.1103/PhysRevE.93.013307. Epub 2016 Jan 19.
2
Reaction rates for mesoscopic reaction-diffusion kinetics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023312. doi: 10.1103/PhysRevE.91.023312. Epub 2015 Feb 23.
3
Reaction rates for reaction-diffusion kinetics on unstructured meshes.
J Chem Phys. 2017 Feb 14;146(6):064101. doi: 10.1063/1.4975167.
4
Reaction-diffusion master equation in the microscopic limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):042901. doi: 10.1103/PhysRevE.85.042901. Epub 2012 Apr 3.
5
A convergent reaction-diffusion master equation.
J Chem Phys. 2013 Aug 7;139(5):054101. doi: 10.1063/1.4816377.
7
Extended master equation models for molecular communication networks.
IEEE Trans Nanobioscience. 2013 Jun;12(2):79-92. doi: 10.1109/TNB.2013.2237785. Epub 2013 Feb 6.
8
Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods.
J Chem Phys. 2011 Dec 28;135(24):244103. doi: 10.1063/1.3666988.
9
Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066106. doi: 10.1103/PhysRevE.80.066106. Epub 2009 Dec 7.
10
A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.
Math Biosci. 2019 Jun;312:23-32. doi: 10.1016/j.mbs.2019.04.001. Epub 2019 Apr 15.

引用本文的文献

1
Multi-Grid Reaction-Diffusion Master Equation: Applications to Morphogen Gradient Modelling.
Bull Math Biol. 2024 Nov 27;87(1):6. doi: 10.1007/s11538-024-01377-y.
2
Self-organised segregation of bacterial chromosomal origins.
Elife. 2019 Aug 9;8:e46564. doi: 10.7554/eLife.46564.
3
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
J Chem Phys. 2017 Dec 21;147(23):234101. doi: 10.1063/1.5002773.
4
Reaction rates for reaction-diffusion kinetics on unstructured meshes.
J Chem Phys. 2017 Feb 14;146(6):064101. doi: 10.1063/1.4975167.
5
A framework for discrete stochastic simulation on 3D moving boundary domains.
J Chem Phys. 2016 Nov 14;145(18):184113. doi: 10.1063/1.4967338.

本文引用的文献

1
Reaction rates for mesoscopic reaction-diffusion kinetics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023312. doi: 10.1103/PhysRevE.91.023312. Epub 2015 Feb 23.
2
Spatial stochastic dynamics enable robust cell polarization.
PLoS Comput Biol. 2013;9(7):e1003139. doi: 10.1371/journal.pcbi.1003139. Epub 2013 Jul 25.
3
A convergent reaction-diffusion master equation.
J Chem Phys. 2013 Aug 7;139(5):054101. doi: 10.1063/1.4816377.
4
The role of dimerisation and nuclear transport in the Hes1 gene regulatory network.
Bull Math Biol. 2014 Apr;76(4):766-98. doi: 10.1007/s11538-013-9842-5. Epub 2013 May 18.
7
Reaction-diffusion master equation in the microscopic limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):042901. doi: 10.1103/PhysRevE.85.042901. Epub 2012 Apr 3.
9
Stochastic reaction-diffusion kinetics in the microscopic limit.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.
10
Detailed simulations of cell biology with Smoldyn 2.1.
PLoS Comput Biol. 2010 Mar 12;6(3):e1000705. doi: 10.1371/journal.pcbi.1000705.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验