Suppr超能文献

微观极限下的随机反应-扩散动力学。

Stochastic reaction-diffusion kinetics in the microscopic limit.

机构信息

Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.

Abstract

Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular interactions. For this reason, spatially or temporally discretized simulations schemes are commonly used when modeling intracellular reaction networks. The challenge in defining such coarse-grained models is to calculate the correct probabilities of reaction given the microscopic parameters and the uncertainty in the molecular positions introduced by the spatial or temporal discretization. In this paper we have solved this problem for the spatially discretized Reaction-Diffusion Master Equation; this enables a seamless and physically consistent transition from the microscopic to the macroscopic frameworks of reaction-diffusion kinetics. We exemplify the use of the methods by showing that a phosphorylation-dephosphorylation motif, commonly observed in eukaryotic signaling pathways, is predicted to display fluctuations that depend on the geometry of the system.

摘要

生化网络的定量分析通常需要考虑化学过程的空间和随机方面。尽管在该领域取得了重大进展,但使用包括扩散限制分子相互作用的最细长度和时间尺度的微观框架来模拟涉及许多反应物或复杂几何形状的系统在计算上仍然是不可行的。出于这个原因,在建模细胞内反应网络时,通常使用空间或时间离散化的模拟方案。定义这种粗粒度模型的挑战在于,给定微观参数和空间或时间离散化引入的分子位置的不确定性,计算反应的正确概率。在本文中,我们已经解决了空间离散化反应-扩散主方程的这个问题;这使得从反应-扩散动力学的微观框架到宏观框架的无缝和物理一致的转变成为可能。我们通过展示一个常见于真核信号通路中的磷酸化-去磷酸化基序,来举例说明这些方法的使用,该基序预计会显示出依赖于系统几何形状的波动。

相似文献

1
Stochastic reaction-diffusion kinetics in the microscopic limit.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.
2
MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit.
Bioinformatics. 2012 Dec 1;28(23):3155-7. doi: 10.1093/bioinformatics/bts584. Epub 2012 Oct 7.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Computing macroscopic reaction rates in reaction-diffusion systems using Monte Carlo simulations.
Phys Rev E. 2024 Jul;110(1-1):014124. doi: 10.1103/PhysRevE.110.014124.
5
Coarse-grained stochastic processes for microscopic lattice systems.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):782-7. doi: 10.1073/pnas.242741499. Epub 2003 Jan 27.
6
Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.
BMC Syst Biol. 2017 Mar 14;11(Suppl 3):21. doi: 10.1186/s12918-017-0401-9.
7
Pattern formation induced by internal microscopic fluctuations.
J Phys Chem A. 2007 Feb 22;111(7):1265-70. doi: 10.1021/jp0674064. Epub 2007 Jan 26.
9
Constant-complexity stochastic simulation algorithm with optimal binning.
J Chem Phys. 2015 Aug 21;143(7):074108. doi: 10.1063/1.4928635.
10
The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
J R Soc Interface. 2020 Oct;17(171):20200563. doi: 10.1098/rsif.2020.0563. Epub 2020 Oct 21.

引用本文的文献

1
Chemical Homogenization for Nonmixing Reactive Interfaces in Porous Media.
ACS Omega. 2025 May 21;10(21):21553-21567. doi: 10.1021/acsomega.5c00641. eCollection 2025 Jun 3.
2
Diffusion-limited cytokine signaling in T cell populations.
iScience. 2024 May 30;27(6):110134. doi: 10.1016/j.isci.2024.110134. eCollection 2024 Jun 21.
3
AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis.
PLoS Comput Biol. 2024 Nov 14;20(11):e1012473. doi: 10.1371/journal.pcbi.1012473. eCollection 2024 Nov.
4
Close agreement between deterministic versus stochastic modeling of first-passage time to vesicle fusion.
Biophys J. 2022 Dec 6;121(23):4569-4584. doi: 10.1016/j.bpj.2022.10.033. Epub 2022 Oct 29.
5
Quantitative characterization of membrane-protein reversible association using FCS.
Biophys J. 2023 Jun 6;122(11):2285-2300. doi: 10.1016/j.bpj.2023.01.026. Epub 2023 Jan 25.
6
CellDynaMo-stochastic reaction-diffusion-dynamics model: Application to search-and-capture process of mitotic spindle assembly.
PLoS Comput Biol. 2022 Jun 3;18(6):e1010165. doi: 10.1371/journal.pcbi.1010165. eCollection 2022 Jun.
7
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement.
PLoS Comput Biol. 2021 Jul 15;17(7):e1008525. doi: 10.1371/journal.pcbi.1008525. eCollection 2021 Jul.
9
Speed limits of protein assembly with reversible membrane localization.
J Chem Phys. 2021 May 21;154(19):194101. doi: 10.1063/5.0045867.
10
Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry.
Mol Biol Cell. 2021 Jan 15;32(2):186-210. doi: 10.1091/mbc.E20-08-0530. Epub 2020 Nov 25.

本文引用的文献

1
Spatio-temporal correlations can drastically change the response of a MAPK pathway.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2473-8. doi: 10.1073/pnas.0906885107. Epub 2010 Jan 25.
2
Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
Phys Biol. 2009 Aug 21;6(4):046001. doi: 10.1088/1478-3975/6/4/046001.
4
Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases.
Syst Biol (Stevenage). 2004 Dec;1(2):230-6. doi: 10.1049/sb:20045021.
5
From in vivo to in silico biology and back.
Nature. 2006 Oct 5;443(7111):527-33. doi: 10.1038/nature05127.
6
Diffusion of transcription factors can drastically enhance the noise in gene expression.
Biophys J. 2006 Dec 15;91(12):4350-67. doi: 10.1529/biophysj.106.086157. Epub 2006 Sep 29.
7
Stochastic simulation of chemical reactions with spatial resolution and single molecule detail.
Phys Biol. 2004 Dec;1(3-4):137-51. doi: 10.1088/1478-3967/1/3/001.
8
Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics.
Phys Rev Lett. 2005 Apr 1;94(12):128103. doi: 10.1103/PhysRevLett.94.128103.
9
Stochastic reaction-diffusion simulation with MesoRD.
Bioinformatics. 2005 Jun 15;21(12):2923-4. doi: 10.1093/bioinformatics/bti431. Epub 2005 Apr 7.
10
Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades.
J Cell Biol. 2004 Feb 2;164(3):353-9. doi: 10.1083/jcb.200308060. Epub 2004 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验