Suppr超能文献

微观极限下的随机反应-扩散动力学。

Stochastic reaction-diffusion kinetics in the microscopic limit.

机构信息

Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.

Abstract

Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular interactions. For this reason, spatially or temporally discretized simulations schemes are commonly used when modeling intracellular reaction networks. The challenge in defining such coarse-grained models is to calculate the correct probabilities of reaction given the microscopic parameters and the uncertainty in the molecular positions introduced by the spatial or temporal discretization. In this paper we have solved this problem for the spatially discretized Reaction-Diffusion Master Equation; this enables a seamless and physically consistent transition from the microscopic to the macroscopic frameworks of reaction-diffusion kinetics. We exemplify the use of the methods by showing that a phosphorylation-dephosphorylation motif, commonly observed in eukaryotic signaling pathways, is predicted to display fluctuations that depend on the geometry of the system.

摘要

生化网络的定量分析通常需要考虑化学过程的空间和随机方面。尽管在该领域取得了重大进展,但使用包括扩散限制分子相互作用的最细长度和时间尺度的微观框架来模拟涉及许多反应物或复杂几何形状的系统在计算上仍然是不可行的。出于这个原因,在建模细胞内反应网络时,通常使用空间或时间离散化的模拟方案。定义这种粗粒度模型的挑战在于,给定微观参数和空间或时间离散化引入的分子位置的不确定性,计算反应的正确概率。在本文中,我们已经解决了空间离散化反应-扩散主方程的这个问题;这使得从反应-扩散动力学的微观框架到宏观框架的无缝和物理一致的转变成为可能。我们通过展示一个常见于真核信号通路中的磷酸化-去磷酸化基序,来举例说明这些方法的使用,该基序预计会显示出依赖于系统几何形状的波动。

相似文献

1
Stochastic reaction-diffusion kinetics in the microscopic limit.微观极限下的随机反应-扩散动力学。
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19820-5. doi: 10.1073/pnas.1006565107. Epub 2010 Nov 1.
2
MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit.MesoRD 1.0:微观极限下的随机反应扩散模拟。
Bioinformatics. 2012 Dec 1;28(23):3155-7. doi: 10.1093/bioinformatics/bts584. Epub 2012 Oct 7.
5
Coarse-grained stochastic processes for microscopic lattice systems.微观晶格系统的粗粒化随机过程。
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):782-7. doi: 10.1073/pnas.242741499. Epub 2003 Jan 27.
7
Pattern formation induced by internal microscopic fluctuations.由内部微观涨落诱导的图案形成。
J Phys Chem A. 2007 Feb 22;111(7):1265-70. doi: 10.1021/jp0674064. Epub 2007 Jan 26.

引用本文的文献

1
Chemical Homogenization for Nonmixing Reactive Interfaces in Porous Media.多孔介质中不混合反应界面的化学均质化
ACS Omega. 2025 May 21;10(21):21553-21567. doi: 10.1021/acsomega.5c00641. eCollection 2025 Jun 3.
2
Diffusion-limited cytokine signaling in T cell populations.T细胞群体中扩散受限的细胞因子信号传导
iScience. 2024 May 30;27(6):110134. doi: 10.1016/j.isci.2024.110134. eCollection 2024 Jun 21.
5
Quantitative characterization of membrane-protein reversible association using FCS.使用 FCS 定量表征膜蛋白的可逆缔合。
Biophys J. 2023 Jun 6;122(11):2285-2300. doi: 10.1016/j.bpj.2023.01.026. Epub 2023 Jan 25.

本文引用的文献

1
Spatio-temporal correlations can drastically change the response of a MAPK pathway.时空相关性可以极大地改变 MAPK 通路的反应。
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2473-8. doi: 10.1073/pnas.0906885107. Epub 2010 Jan 25.
9
Stochastic reaction-diffusion simulation with MesoRD.使用MesoRD进行随机反应扩散模拟。
Bioinformatics. 2005 Jun 15;21(12):2923-4. doi: 10.1093/bioinformatics/bti431. Epub 2005 Apr 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验