Suppr超能文献

用于治疗恶性肿瘤的可生物降解的刺激响应性聚合物胶束

Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy.

作者信息

Yan Lesan, Li Xingde

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Curr Pharm Biotechnol. 2016;17(3):227-36. doi: 10.2174/138920101703160206142821.

Abstract

In the past decade, drug delivery systems that can respond to the tumor microenvironment or external stimuli have emerged as promising platforms for treating malignancies due to their improved antitumor efficacy and reduced side effects. In particular, biodegradable polymeric micelles have attracted increasing attention and been rapidly developed as a distinct therapeutic to overcome limitations of conventional chemotherapeutic anticancer drugs. Because of their advantages with respect to biocompatibility, degradability, circulation time, and tumor accumulation, considerable effort has been dedicated to the developing and optimizing micellar systems during the past few years. This review highlights recent advances concerning stimuli-responsive micelles made of biodegradable polypeptide and polyester as nanocarries for drug delivery, and especially limits the content to pH sensitive, redox sensitive, and photo-sensitive micellar systems for safe and efficient cancer chemotherapy.

摘要

在过去十年中,能够响应肿瘤微环境或外部刺激的药物递送系统,因其提高的抗肿瘤疗效和减少的副作用,已成为治疗恶性肿瘤的有前景的平台。特别是,可生物降解的聚合物胶束已引起越来越多的关注,并作为一种独特的治疗方法迅速发展,以克服传统化疗抗癌药物的局限性。由于其在生物相容性、可降解性、循环时间和肿瘤蓄积方面的优势,在过去几年中人们投入了大量精力来开发和优化胶束系统。本综述重点介绍了由可生物降解的多肽和聚酯制成的刺激响应性胶束作为药物递送纳米载体的最新进展,尤其将内容限定为用于安全高效癌症化疗的pH敏感、氧化还原敏感和光敏感胶束系统。

相似文献

1
Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy.
Curr Pharm Biotechnol. 2016;17(3):227-36. doi: 10.2174/138920101703160206142821.
2
Classification of stimuli-responsive polymers as anticancer drug delivery systems.
Drug Deliv. 2015 Feb;22(2):145-55. doi: 10.3109/10717544.2014.887157. Epub 2014 Feb 19.
3
Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.
Int J Nanomedicine. 2018 May 18;13:2921-2942. doi: 10.2147/IJN.S158696. eCollection 2018.
4
7
Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy.
Acta Biomater. 2017 Nov;63:135-149. doi: 10.1016/j.actbio.2017.09.002. Epub 2017 Sep 7.
8
Polymeric micelles for anticancer drug delivery.
Ther Deliv. 2020 Oct;11(10):613-635. doi: 10.4155/tde-2020-0008. Epub 2020 Sep 15.
9
Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy.
J Control Release. 2013 Aug 10;169(3):180-4. doi: 10.1016/j.jconrel.2012.11.012. Epub 2012 Nov 27.
10
Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors.
Colloids Surf B Biointerfaces. 2019 Jan 1;173:581-590. doi: 10.1016/j.colsurfb.2018.10.022. Epub 2018 Oct 10.

引用本文的文献

1
Role of nanomedicines in lung cancer treatment and diagnosis: opportunities and challenges.
Med Oncol. 2025 Jun 30;42(8):305. doi: 10.1007/s12032-025-02862-7.
2
Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties.
Polymers (Basel). 2024 Dec 14;16(24):3493. doi: 10.3390/polym16243493.
3
Theranostic Diagnostics.
Results Probl Cell Differ. 2024;73:551-578. doi: 10.1007/978-3-031-62036-2_22.
4
Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review.
RSC Adv. 2023 Jun 1;13(24):16488-16511. doi: 10.1039/d3ra00866e. eCollection 2023 May 30.
5
Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery.
Pharmaceutics. 2023 Mar 17;15(3):976. doi: 10.3390/pharmaceutics15030976.
7
Light-activated nanomaterials for tumor immunotherapy.
Front Chem. 2022 Oct 7;10:1031811. doi: 10.3389/fchem.2022.1031811. eCollection 2022.
8
New Advances in Biomedical Application of Polymeric Micelles.
Pharmaceutics. 2022 Aug 15;14(8):1700. doi: 10.3390/pharmaceutics14081700.
9
Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.
J Nanobiotechnology. 2022 Mar 24;20(1):152. doi: 10.1186/s12951-022-01364-2.
10
Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature.
Int J Nanomedicine. 2021 Nov 11;16:7517-7533. doi: 10.2147/IJN.S333657. eCollection 2021.

本文引用的文献

1
Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line.
Biomater Sci. 2013 Apr 5;1(4):434-442. doi: 10.1039/c2bm00184e. Epub 2013 Jan 14.
3
Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro.
J Mater Chem B. 2013 Jan 7;1(1):69-81. doi: 10.1039/c2tb00063f. Epub 2012 Nov 2.
5
Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions.
J Am Chem Soc. 2014 Aug 6;136(31):11085-92. doi: 10.1021/ja5053158. Epub 2014 Jul 29.
6
Industry Update: the latest developments in therapeutic delivery.
Ther Deliv. 2014 May;5(5):505-9. doi: 10.4155/tde.14.26.
7
In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.
J Control Release. 2014 Nov 10;193:214-27. doi: 10.1016/j.jconrel.2014.04.056. Epub 2014 May 9.
8
Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers.
J Am Chem Soc. 2014 May 28;136(21):7531-4. doi: 10.1021/ja413036q. Epub 2014 Mar 11.
9
State-of-the-art materials for ultrasound-triggered drug delivery.
Adv Drug Deliv Rev. 2014 Jun;72:3-14. doi: 10.1016/j.addr.2013.12.010. Epub 2013 Dec 31.
10
Stimuli-responsive nanocarriers for drug delivery.
Nat Mater. 2013 Nov;12(11):991-1003. doi: 10.1038/nmat3776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验