Yi Grace Y, Tan Xianming, Li Runze
Department of Statistics and Actuarial Science University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
The Methodology Center Pennsylvania State University University Park, PA16802.
Can J Stat. 2015 Dec;43(4):498-518. doi: 10.1002/cjs.11268. Epub 2015 Oct 20.
In contrast to extensive attention on model selection for univariate data, research on model selection for longitudinal data remains largely unexplored. This is particularly the case when data are subject to missingness and measurement error. To address this important problem, we propose marginal methods that simultaneously carry out model selection and estimation for longitudinal data with missing responses and error-prone covariates. Our method have several appealing features: the applicability is broad because the methods are developed for a unified framework with marginal generalized linear models; model assumptions are minimal in that no full distribution is required for the response process and the distribution of the mismeasured covariates is left unspecified; and the implementation is straightforward. To justify the proposed methods, we provide both theoretical properties and numerical assessments.
与对单变量数据模型选择的广泛关注形成对比的是,纵向数据模型选择的研究在很大程度上仍未得到充分探索。当数据存在缺失值和测量误差时,情况尤其如此。为了解决这个重要问题,我们提出了边际方法,该方法可以同时对具有缺失响应和易出错协变量的纵向数据进行模型选择和估计。我们的方法具有几个吸引人的特点:适用性广泛,因为这些方法是在边际广义线性模型的统一框架下开发的;模型假设最少,因为响应过程不需要完整的分布,并且未指定测量错误协变量的分布;而且实现起来很简单。为了证明所提出的方法的合理性,我们提供了理论性质和数值评估。