Suppr超能文献

同时针对潜在混杂因素进行变量选择和测量误差处理,估计平均处理效应。

Estimation of the average treatment effect with variable selection and measurement error simultaneously addressed for potential confounders.

机构信息

Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Canada.

Department of Computer Science, University of Western Ontario, London, Canada.

出版信息

Stat Methods Med Res. 2023 Apr;32(4):691-711. doi: 10.1177/09622802221146308. Epub 2023 Jan 24.

Abstract

In the framework of causal inference, the inverse probability weighting estimation method and its variants have been commonly employed to estimate the average treatment effect. Such methods, however, are challenged by the presence of irrelevant pre-treatment variables and measurement error. Ignoring these features and naively applying the usual inverse probability weighting estimation procedures may typically yield biased inference results. In this article, we develop an inference method for estimating the average treatment effect with those features taken into account. We establish theoretical properties for the resulting estimator and carry out numerical studies to assess the finite sample performance of the proposed estimator.

摘要

在因果推断框架中,反概率加权估计方法及其变体已被广泛用于估计平均处理效应。然而,这些方法受到无关的预处理变量和测量误差的影响。忽略这些特征并盲目应用常用的反概率加权估计程序通常会产生有偏的推断结果。在本文中,我们开发了一种考虑这些特征的估计平均处理效应的推断方法。我们为得到的估计量建立了理论性质,并进行了数值研究来评估所提出的估计量的有限样本性能。

相似文献

4
Multiply robust estimation of causal quantile treatment effects.因果分位数治疗效果的多重稳健估计
Stat Med. 2020 Dec 10;39(28):4238-4251. doi: 10.1002/sim.8722. Epub 2020 Aug 28.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验