Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
Nat Commun. 2024 Jul 30;15(1):6409. doi: 10.1038/s41467-024-50319-8.
Voltage-sensing phosphatases (VSPs) dephosphorylate phosphoinositide (PIP) signaling lipids in response to membrane depolarization. VSPs possess an S4-containing voltage sensor domain (VSD), resembling that of voltage-gated cation channels, and a lipid phosphatase domain (PD). The mechanism by which voltage turns on enzyme activity is unclear. Structural analysis and modeling suggest several sites of VSD-PD interaction that could couple voltage sensing to catalysis. Voltage clamp fluorometry reveals voltage-driven rearrangements in three sites implicated earlier in enzyme activation-the VSD-PD linker, gating loop and R loop-as well as the N-terminal domain, which has not yet been explored. N-terminus mutations perturb both rearrangements in the other segments and enzyme activity. Our results provide a model for a dynamic assembly by which S4 controls the catalytic site.
电压感应磷酸酶(VSPs)在膜去极化时会去磷酸化磷脂酰肌醇(PIP)信号脂质。VSPs 具有一个含有 S4 的电压感应结构域(VSD),类似于电压门控阳离子通道,还有一个脂质磷酸酶结构域(PD)。电压激活酶活性的机制尚不清楚。结构分析和建模表明,VSD-PD 相互作用的几个位点可以将电压感应与催化作用偶联起来。电压钳荧光法揭示了早些时候在酶激活中涉及的三个位点(VSD-PD 接头、门控环和 R 环)以及尚未探索的 N 端结构域中的电压驱动重排。N 端突变扰乱了其他片段中的两种重排和酶活性。我们的结果为 S4 控制催化位点的动态组装提供了一个模型。