Liu Huihui, Gao Yan-Song, Chen Xiang-Jun, Chen Zhe, Zhou Hai-Meng, Yan Yong-Bin, Gong Haipeng
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Sci Rep. 2016 Feb 16;6:21191. doi: 10.1038/srep21191.
Creatine kinase (CK) helps maintain homeostasis of intracellular ATP level by catalyzing the reversible phosphotransfer between ATP and phosphocreatine. In humans, there are two cytosolic CK isoforms, the muscle-type (M) and the brain-type (B), which frequently function as homodimers (hMMCK and hBBCK). Interestingly, these isoenzymes exhibit significantly different thermostabilities, despite high similarity in amino acid sequences and tertiary structures. In order to investigate the mechanism of this phenomenon, in this work, we first used domain swapping and site-directed mutagenesis to search for the key residues responsible for the isoenzyme-specific thermostability. Strikingly, the difference in thermostability was found to principally arise from one single residue substitution at position 36 (Pro in hBBCK vs. Leu in hMMCK). We then engaged the molecular dynamics simulations to study the molecular mechanism. The calculations imply that the P36L substitution introduces additional local interactions around residue 36 and thus further stabilizes the dimer interface through a complex interaction network, which rationalizes the observation that hMMCK is more resistant to thermal inactivation than hBBCK. We finally confirmed this molecular explanation through thermal inactivation assays on Asp36 mutants that were proposed to devastate the local interactions and thus the dimer associations in both isoenzymes.
肌酸激酶(CK)通过催化ATP与磷酸肌酸之间的可逆磷酸转移反应,帮助维持细胞内ATP水平的稳态。在人类中,有两种胞质CK同工酶,即肌肉型(M)和脑型(B),它们通常以同二聚体形式发挥作用(hMMCK和hBBCK)。有趣的是,尽管这些同工酶在氨基酸序列和三级结构上高度相似,但它们的热稳定性却存在显著差异。为了探究这种现象的机制,在本研究中,我们首先利用结构域交换和定点诱变来寻找决定同工酶特异性热稳定性的关键残基。令人惊讶的是,发现热稳定性的差异主要源于36位的单个残基取代(hBBCK中的Pro与hMMCK中的Leu)。然后,我们通过分子动力学模拟来研究其分子机制。计算结果表明,P36L取代在36位残基周围引入了额外的局部相互作用,从而通过复杂的相互作用网络进一步稳定了二聚体界面,这解释了hMMCK比hBBCK更耐热失活的现象。我们最终通过对Asp36突变体进行热失活实验证实了这一分子解释,该突变体被认为破坏了两种同工酶中的局部相互作用以及二聚体缔合。