Chen Yan-Ting, Takahashi Saburo, Nakayama Hiroyasu, Althammer Matthias, Goennenwein Sebastian T B, Saitoh Eiji, Bauer Gerrit E W
RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
J Phys Condens Matter. 2016 Mar 16;28(10):103004. doi: 10.1088/0953-8984/28/10/103004. Epub 2016 Feb 16.
We review the so-called spin Hall magnetoresistance (SMR) in bilayers of a magnetic insulator and a metal, in which spin currents are generated in the normal metal by the spin Hall effect. The associated angular momentum transfer to the ferromagnetic layer and thereby the electrical resistance is modulated by the angle between the applied current and the magnetization direction. The SMR provides a convenient tool to non-invasively measure the magnetization direction and spin-transfer torque to an insulator. We introduce the minimal theoretical instruments to calculate the SMR, i.e. spin diffusion theory and quantum mechanical boundary conditions. This leads to a small set of parameters that can be fitted to experiments. We discuss the limitations of the theory as well as alternative mechanisms such as the ferromagnetic proximity effect and Rashba spin-orbit torques, and point out new developments.
我们回顾了磁性绝缘体与金属双层结构中的所谓自旋霍尔磁电阻(SMR),其中自旋电流通过自旋霍尔效应在普通金属中产生。相关的角动量转移到铁磁层,进而通过施加电流与磁化方向之间的夹角来调制电阻。SMR提供了一种便捷工具,可用于非侵入性地测量磁化方向以及向绝缘体的自旋转移转矩。我们介绍了用于计算SMR的最小理论工具,即自旋扩散理论和量子力学边界条件。这导致了一小套可与实验拟合的参数。我们讨论了该理论的局限性以及诸如铁磁近邻效应和Rashba自旋轨道转矩等替代机制,并指出了新的进展。