AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059, Kraków, Poland.
Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland.
Sci Rep. 2017 Apr 20;7(1):968. doi: 10.1038/s41598-017-00994-z.
When a current is passed through a non-magnetic metal with strong spin-orbit coupling, an orthogonal spin current is generated. This spin current can be used to switch the magnetization of an adjacent ferromagnetic layer or drive its magnetization into continuous precession. The interface, which is not necessarily sharp, and the crystallographic structure of the nonmagnetic metal can both affect the strength of current-induced spin-orbit torques. Here, we investigate the effects of interface intermixing and film microstructure on spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO trilayers with different Ta layer thickness (5 nm, 10 nm, 15 nm), greater than the spin diffusion length. Effective spin-orbit torques are determined from harmonic Hall voltage measurements performed at temperatures ranging from 20 K to 300 K. We account for the temperature dependence of damping-like and field-like torques by including an additional contribution from the Ta/CoFeB interface in the spin diffusion model. Using this approach, the temperature variations of the spin Hall angle in the Ta underlayer and at the Ta/CoFeB interface are determined separately. Our results indicate an almost temperature-independent spin Hall angle of [Formula: see text] in Ta and a strongly temperature-dependent [Formula: see text] for the intermixed Ta/CoFeB interface.
当电流通过具有强自旋轨道耦合的非磁性金属时,会产生一个正交的自旋电流。这个自旋电流可以用来切换相邻铁磁层的磁化,或者驱动其磁化进入连续进动。这个界面不一定是陡峭的,非磁性金属的晶体结构都会影响电流诱导的自旋轨道力矩的强度。在这里,我们研究了界面混合和薄膜微结构对具有不同 Ta 层厚度(5nm、10nm、15nm)的垂直磁化 Ta/CoFeB/MgO 三层膜中自旋轨道力矩的影响,Ta 层厚度大于自旋扩散长度。在 20K 至 300K 的温度范围内,通过谐波 Hall 电压测量来确定有效自旋轨道力矩。我们通过在自旋扩散模型中包含 Ta/CoFeB 界面的额外贡献,来考虑阻尼型和场型力矩的温度依赖性。通过这种方法,可以分别确定 Ta 下的自旋霍尔角和 Ta/CoFeB 界面的自旋霍尔角随温度的变化。我们的结果表明,Ta 中的自旋霍尔角几乎与温度无关,为[Formula: see text],而混合的 Ta/CoFeB 界面的自旋霍尔角则随温度强烈变化,为[Formula: see text]。