Suppr超能文献

评估临床预测模型外部验证时的判别性能。

Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

作者信息

Nieboer Daan, van der Ploeg Tjeerd, Steyerberg Ewout W

机构信息

Department of Public Health, Erasmus MC-University medical center, Rotterdam, the Netherlands.

Department of Science, Medical Center Alkmaar/Inholland University, Alkmaar, the Netherlands.

出版信息

PLoS One. 2016 Feb 16;11(2):e0148820. doi: 10.1371/journal.pone.0148820. eCollection 2016.

Abstract

INTRODUCTION

External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting.

METHODS

We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury.

RESULTS

The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2.

CONCLUSION

The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

摘要

引言

外部验证研究对于评估预测模型的可推广性至关重要。最近提出了一种置换检验,该检验聚焦于用c统计量量化的区分度,以判断预测模型是否可移植到新环境中。我们旨在评估此检验,并将其与先前提出的用于判断从开发环境到外部验证环境中c统计量任何变化的程序进行比较。

方法

我们将置换检验的使用与基于先前提出的框架得出的c统计量基准值的使用进行了比较,该框架用于判断预测模型的可移植性。在一项模拟研究中,我们在开发集上使用逻辑回归开发了一个预测模型,并在验证集中对其进行验证。我们集中于两种情况:1)与开发集相比,验证集中的病例组合更具异质性,预测变量效应较弱;2)验证集中的病例组合异质性较小,且验证集和开发集中的预测变量效应相同。此外,我们在一项案例研究中使用15个创伤性脑损伤患者数据集说明了这些方法。

结果

置换检验表明,在情况1中(几乎所有模拟样本)验证集和开发集是同质的,而在情况2中(17%-39%的模拟样本)是异质的。先前提出的c统计量基准值和线性预测变量的标准差正确地指出了情况1中病例组合更具异质性,以及情况2中病例组合异质性较小。

结论

当在开发人群和验证人群之间存在病例组合差异的情况下对预测模型进行外部验证时,最近提出的置换检验可能会产生误导性结果。为了正确解释在外部验证中发现的c统计量,将病例组合差异与不正确的回归系数区分开来至关重要。

相似文献

1
Assessing Discriminative Performance at External Validation of Clinical Prediction Models.
PLoS One. 2016 Feb 16;11(2):e0148820. doi: 10.1371/journal.pone.0148820. eCollection 2016.
2
A new framework to enhance the interpretation of external validation studies of clinical prediction models.
J Clin Epidemiol. 2015 Mar;68(3):279-89. doi: 10.1016/j.jclinepi.2014.06.018. Epub 2014 Aug 30.
4
A new concordance measure for risk prediction models in external validation settings.
Stat Med. 2016 Oct 15;35(23):4136-52. doi: 10.1002/sim.6997. Epub 2016 Jun 1.
6
External validity of risk models: Use of benchmark values to disentangle a case-mix effect from incorrect coefficients.
Am J Epidemiol. 2010 Oct 15;172(8):971-80. doi: 10.1093/aje/kwq223. Epub 2010 Aug 31.
7
External validation of existing dementia prediction models on observational health data.
BMC Med Res Methodol. 2022 Dec 5;22(1):311. doi: 10.1186/s12874-022-01793-5.
9
Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury.
J Clin Epidemiol. 2016 Oct;78:83-89. doi: 10.1016/j.jclinepi.2016.03.002. Epub 2016 Mar 14.

引用本文的文献

1
Type 2 Diabetes Prediction Model in China: A Five-Year Systematic Review.
Healthcare (Basel). 2025 Aug 15;13(16):2007. doi: 10.3390/healthcare13162007.
3
AI for BPH Surgical Decision-Making: Cost Effectiveness and Outcomes.
Curr Urol Rep. 2024 Sep 23;26(1):4. doi: 10.1007/s11934-024-01240-6.
4
Transportability of bacterial infection prediction models for critically ill patients.
J Am Med Inform Assoc. 2023 Dec 22;31(1):98-108. doi: 10.1093/jamia/ocad174.
5
A systematic review of predictive models for hospital-acquired pressure injury using machine learning.
Nurs Open. 2023 Mar;10(3):1234-1246. doi: 10.1002/nop2.1429. Epub 2022 Oct 30.
7
External validation of prognostic models for chronic kidney disease among type 2 diabetes.
J Nephrol. 2022 Jul;35(6):1637-1653. doi: 10.1007/s40620-021-01220-w. Epub 2022 Jan 8.

本文引用的文献

1
Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.
Circ Cardiovasc Qual Outcomes. 2015 Jul;8(4):368-75. doi: 10.1161/CIRCOUTCOMES.115.001693. Epub 2015 Jul 7.
2
A permutation method to assess heterogeneity in external validation for risk prediction models.
PLoS One. 2015 Jan 21;10(1):e0116957. doi: 10.1371/journal.pone.0116957. eCollection 2015.
3
A new framework to enhance the interpretation of external validation studies of clinical prediction models.
J Clin Epidemiol. 2015 Mar;68(3):279-89. doi: 10.1016/j.jclinepi.2014.06.018. Epub 2014 Aug 30.
4
Advancing care for traumatic brain injury: findings from the IMPACT studies and perspectives on future research.
Lancet Neurol. 2013 Dec;12(12):1200-10. doi: 10.1016/S1474-4422(13)70234-5. Epub 2013 Oct 17.
5
Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers.
Stat Med. 2014 Feb 10;33(3):517-35. doi: 10.1002/sim.5941. Epub 2013 Aug 23.
6
Prognosis Research Strategy (PROGRESS) 3: prognostic model research.
PLoS Med. 2013;10(2):e1001381. doi: 10.1371/journal.pmed.1001381. Epub 2013 Feb 5.
10
Risk prediction models: II. External validation, model updating, and impact assessment.
Heart. 2012 May;98(9):691-8. doi: 10.1136/heartjnl-2011-301247. Epub 2012 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验