Suppr超能文献

在二级保健环境中针对临床预测模型的开发和验证:电子健康记录数据的机遇和挑战。

Targeted Development and Validation of Clinical Prediction Models in Secondary Care Settings: Opportunities and Challenges for Electronic Health Record Data.

机构信息

Northwest Academy, Northwest Clinics Alkmaar, Pr Julianalaan 14, Alkmaar, 1815JE, Netherlands, 31 0880853821.

Department of Information and Communication Technology, Northwest Clinics Alkmaar, Alkmaar, Netherlands.

出版信息

JMIR Med Inform. 2024 Oct 24;12:e57035. doi: 10.2196/57035.

Abstract

Before deploying a clinical prediction model (CPM) in clinical practice, its performance needs to be demonstrated in the population of intended use. This is also called "targeted validation." Many CPMs developed in tertiary settings may be most useful in secondary care, where the patient case mix is broad and practitioners need to triage patients efficiently. However, since structured or rich datasets of sufficient quality from secondary to assess the performance of a CPM are scarce, a validation gap exists that hampers the implementation of CPMs in secondary care settings. In this viewpoint, we highlight the importance of targeted validation and the use of CPMs in secondary care settings and discuss the potential and challenges of using electronic health record (EHR) data to overcome the existing validation gap. The introduction of software applications for text mining of EHRs allows the generation of structured "big" datasets, but the imperfection of EHRs as a research database requires careful validation of data quality. When using EHR data for the development and validation of CPMs, in addition to widely accepted checklists, we propose considering three additional practical steps: (1) involve a local EHR expert (clinician or nurse) in the data extraction process, (2) perform validity checks on the generated datasets, and (3) provide metadata on how variables were constructed from EHRs. These steps help to generate EHR datasets that are statistically powerful, of sufficient quality and replicable, and enable targeted development and validation of CPMs in secondary care settings. This approach can fill a major gap in prediction modeling research and appropriately advance CPMs into clinical practice.

摘要

在将临床预测模型 (CPM) 应用于临床实践之前,需要在预期使用人群中证明其性能。这也被称为“目标验证”。许多在三级医疗机构开发的 CPM 可能在二级医疗机构中最有用,因为那里的患者病例组合广泛,医生需要有效地对患者进行分诊。然而,由于缺乏来自二级医疗机构的足够质量的结构化或丰富数据集来评估 CPM 的性能,因此存在验证差距,这阻碍了 CPM 在二级医疗机构中的实施。在本观点中,我们强调了目标验证的重要性以及 CPM 在二级医疗机构中的使用,并讨论了使用电子健康记录 (EHR) 数据来克服现有验证差距的潜力和挑战。用于 EHR 文本挖掘的软件应用程序的引入允许生成结构化的“大数据集”,但 EHR 作为研究数据库的不完美性要求对数据质量进行仔细验证。在使用 EHR 数据开发和验证 CPM 时,除了广泛接受的清单外,我们还建议考虑三个额外的实际步骤:(1) 在数据提取过程中让当地的 EHR 专家(临床医生或护士)参与,(2) 对生成的数据集进行有效性检查,以及 (3) 提供有关如何从 EHR 构建变量的元数据。这些步骤有助于生成具有统计学效力、足够质量和可复制性的 EHR 数据集,并能够在二级医疗机构中针对目标开发和验证 CPM。这种方法可以填补预测建模研究中的一个主要空白,并将 CPM 适当地推进到临床实践中。

相似文献

5

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验