人类微生物与疾病关联分析。

An analysis of human microbe-disease associations.

作者信息

Ma Wei, Zhang Lu, Zeng Pan, Huang Chuanbo, Li Jianwei, Geng Bin, Yang Jichun, Kong Wei, Zhou Xuezhong, Cui Qinghua

出版信息

Brief Bioinform. 2017 Jan;18(1):85-97. doi: 10.1093/bib/bbw005. Epub 2016 Feb 15.

Abstract

The microbiota living in the human body has critical impacts on our health and disease, but a systems understanding of its relationships with disease remains limited. Here, we use a large-scale text mining-based manually curated microbe-disease association data set to construct a microbe-based human disease network and investigate the relationships between microbes and disease genes, symptoms, chemical fragments and drugs. We reveal that microbe-based disease loops are significantly coherent. Microbe-based disease connections have strong overlaps with those constructed by disease genes, symptoms, chemical fragments and drugs. Moreover, we confirm that the microbe-based disease analysis is able to predict novel connections and mechanisms for disease, microbes, genes and drugs. The presented network, methods and findings can be a resource helpful for addressing some issues in medicine, for example, the discovery of bench knowledge and bedside clinical solutions for disease mechanism understanding, diagnosis and therapy.

摘要

生活在人体中的微生物群对我们的健康和疾病有着至关重要的影响,但对其与疾病关系的系统理解仍然有限。在此,我们使用基于大规模文本挖掘的人工整理的微生物 - 疾病关联数据集构建基于微生物的人类疾病网络,并研究微生物与疾病基因、症状、化学片段和药物之间的关系。我们发现基于微生物的疾病环显著连贯。基于微生物的疾病关联与由疾病基因、症状、化学片段和药物构建的关联有很强的重叠。此外,我们证实基于微生物的疾病分析能够预测疾病、微生物、基因和药物的新关联和机制。所呈现的网络、方法和发现可作为一种资源,有助于解决医学中的一些问题,例如,发现基础知识以及针对疾病机制理解、诊断和治疗的床边临床解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索